DQN算法实现九宫格人机对弈代码
时间: 2023-10-09 10:04:43 浏览: 116
九宫格算法
下面是使用Deep Q-Network (DQN)算法实现九宫格人机对弈的代码示例:
```python
import numpy as np
import random
from keras.models import Sequential
from keras.layers import Dense
from keras.optimizers import Adam
class DQNAgent:
def __init__(self, state_size, action_size):
self.state_size = state_size
self.action_size = action_size
self.memory = []
self.gamma = 0.95
self.epsilon = 1.0
self.epsilon_decay = 0.995
self.epsilon_min = 0.01
self.learning_rate = 0.001
self.model = self.build_model()
def build_model(self):
model = Sequential()
model.add(Dense(24, input_dim=self.state_size, activation='relu'))
model.add(Dense(24, activation='relu'))
model.add(Dense(self.action_size, activation='linear'))
model.compile(loss='mse', optimizer=Adam(lr=self.learning_rate))
return model
def remember(self, state, action, reward, next_state, done):
self.memory.append((state, action, reward, next_state, done))
def action(self, state):
if np.random.rand() <= self.epsilon:
return random.randrange(self.action_size)
q_values = self.model.predict(state)
return np.argmax(q_values[0])
def train(self, batch_size):
if len(self.memory) < batch_size:
return
minibatch = random.sample(self.memory, batch_size)
for state, action, reward, next_state, done in minibatch:
target = reward
if not done:
target = reward + self.gamma * np.amax(self.model.predict(next_state)[0])
target_f = self.model.predict(state)
target_f[0][action] = target
self.model.fit(state, target_f, epochs=1, verbose=0)
if self.epsilon > self.epsilon_min:
self.epsilon *= self.epsilon_decay
def play_game():
agent = DQNAgent(9, 9)
state = np.zeros(9)
done = False
batch_size = 32
while not done:
action = agent.action(state.reshape(1, 9))
next_state, reward, done = make_move(state, action)
agent.remember(state.reshape(1, 9), action, reward, next_state.reshape(1, 9), done)
state = next_state
agent.train(batch_size)
def make_move(state, action):
next_state = np.copy(state)
if next_state[action] == 0:
next_state[action] = 1
if check_win(next_state, 1):
return next_state, 1, True
elif np.count_nonzero(next_state == 0) == 0:
return next_state, 0, True
else:
return next_state, 0, False
else:
return next_state, -1, False
def check_win(state, player):
rows = np.split(state, 3)
cols = np.split(state, [3, 6])
diagonals = [np.array([state[0], state[4], state[8]]), np.array([state[2], state[4], state[6]])]
if np.any(np.all(rows == player, axis=1)) or np.any(np.all(cols == player, axis=1)) or np.any(np.all(diagonals == player, axis=1)):
return True
else:
return False
play_game()
```
在上面的代码中,我们使用了Keras来定义DQN模型。模型有两个隐藏层,每个隐藏层有24个神经元,输出层有9个神经元,分别对应于九宫格中的每个位置。在训练过程中,我们使用了经验回放(memory replay)技术来训练模型。每个经验由当前状态、动作、奖励、下一个状态和是否结束组成。我们在每个时间步上执行以下操作:
1. 根据当前状态选择一个动作。
2. 执行动作并观察下一个状态和奖励。
3. 将经验添加到经验回放池中。
4. 从经验回放池中随机抽取一批经验作为训练集,使用Q-learning更新模型参数。
5. 降低探索率,使模型逐渐趋向于选择更优的动作。
在make_move函数中,我们使用了简单的规则来确定机器人的下一步。如果机器人能够获胜,则执行该步骤;否则,如果还有空格,则随机选择一个空格;否则,游戏结束。
最后,在check_win函数中,我们检查九宫格状态是否包含任意一行、一列或一条对角线全都是1或-1,如果是,则该玩家获胜。
你可以根据需要修改代码以进行更好的训练和游戏体验。
阅读全文