int parse_package(uint8_t *buf, uint32_t size) { int i; protocol_package_t *pk = (protocol_package_t *)buf; uint16_t crc16_calc_value = dataVerificationCRC16(buf, size - 2); uint16_t crc16_package_value = pk->data[pk->len] << 8 | pk->data[pk->len + 1]; printf("----------package---------\r\n"); printf("head:%x\r\n", pk->head); printf("id:%x\r\n", pk->id); printf("func:%x\r\n", pk->function); printf("len:%x\r\n", pk->len); printf("data:"); for(i = 0; i < pk->len; ++i){ printf("%x ", pk->data[i]); } printf("\r\n"); printf("CRC16_package_value:%x\n", pk->data[i] << 8 | pk->data[i + 1]); printf("CRC16_calculate_value:%x\n", crc16_calc_value); if(crc16_calc_value != crc16_package_value){ printf("package_data_error"); return PACKAGE_DATA_ERROR; } if(pk->id >= END_DEVICE_ID){ return PACKAGE_ID_ERROR; } device_control = device_control_function[pk->id]; if(device_control){ return device_control(pk); }else{ return EMPTY_DEVICE_HANDLE_FUNCTION; } //return PACKAGE_OK; }写注释
时间: 2024-04-23 14:24:04 浏览: 68
这段代码的作用是解析收到的协议数据包,并根据数据包的内容执行相应的操作。函数的参数包括一个指向缓冲区的指针和缓冲区的大小。函数首先将指向缓冲区的指针转换为一个指向协议数据包的指针。然后,它计算数据包的校验码,并将校验码与数据包中的校验码进行比较。如果校验码不匹配,则返回PACKAGE_DATA_ERROR。如果数据包的ID值大于或等于END_DEVICE_ID,则返回PACKAGE_ID_ERROR。根据ID值,函数选择相应的设备控制函数,并执行该函数。如果找不到设备控制函数,则返回EMPTY_DEVICE_HANDLE_FUNCTION。最后,函数返回PACKAGE_OK。在函数执行过程中,还会输出数据包的各个字段的值和校验码的计算结果。
相关问题
请帮我解释这段代码:#include "cmd_parse.h" static int bufed_uart_rcv_1B(void *ref, uint8_t *c) { BUFED_UART_T *h = ref; return bufed_uart_rcv(h, c, 1); } CMD_PARSE_T *cmd_ps_1; osThreadId rx_cmp_tst_hd; extern RNG_HandleTypeDef hrng; void uart1_fast_loopback_test(uint32_t fatfs_ok) { uint8_t *tx_buf, *rx_buf; tx_buf= pvPortMalloc(URT_TST_BUF_LEN); if(tx_buf == NULL){ GS_LOGPRT_ERR("tx_buf pvPortMalloc failed.\r\n"); goto err_00; } rx_buf= pvPortMalloc(URT_TST_BUF_LEN); if(rx_buf == NULL){ GS_LOGPRT_ERR("tx_buf pvPortMalloc failed.\r\n"); goto err_01; } FIL *fp = pvPortMalloc(sizeof(*fp)); if(fp==NULL){ GS_LOGPRT_ERR("tx_buf pvPortMalloc failed.\r\n"); goto err_02; } bfdurt_tst_01.rx_buf = rx_buf; bfdurt_tst_01.tx_buf = tx_buf; bfdurt_tst_01.buf_size = URT_TST_BUF_LEN; bfdurt_tst_01.err_cnt = 0; for(uint32_t i = 0; i < URT_TST_BUF_LEN; i++) tx_buf[i] = HAL_RNG_GetRandomNumber(&hrng); osThreadDef(rx_cmp_tst_tsk, uart_rx_cmp, osPriorityBelowNormal, 0, 200); rx_cmp_tst_hd = osThreadCreate(osThread(rx_cmp_tst_tsk), &(bfdurt_tst_ptr)); osDelay(120); uint32_t lp; cmdprs_init(&cmd_ps_1, 256, &RBFD_UART_GET_UART(urt2), bufed_uart_rcv_1B); uint32_t f_num = 0; size_t n; while(1){ GS_Printf("Input test data length\r\n"); cmdprs_read_1line(cmd_ps_1); char ch; int scn = sscanf((void*)cmd_ps_1->buf->data,"%lu%c", &lp, &ch); if(scn == 2){ if(ch == 'M' || ch == 'm') lp <<= 10U; else if(ch == 'G' || ch == 'g') lp <<= 20U; else if(ch == 'K' || ch == 'k') ; else lp >>= 10U; lp /= (URT_TST_BUF_LEN/1024); }else{ GS_Printf("ERROR\r\n"); break; }
这段代码包含了一些头文件的引用,并定义了一些变量和函数。下面是代码的解释:
1. `#include "cmd_parse.h"` 是一个预处理指令,用于包含头文件 "cmd_parse.h"。
2. `static int bufed_uart_rcv_1B(void *ref, uint8_t *c)` 是一个静态函数,接收一个字节的数据并存储在指针 `c` 指向的位置。它通过调用函数 `bufed_uart_rcv` 来实现。
3. `CMD_PARSE_T *cmd_ps_1;` 声明了一个指向 `CMD_PARSE_T` 类型的指针变量 `cmd_ps_1`。
4. `osThreadId rx_cmp_tst_hd;` 声明了一个 `osThreadId` 类型的变量 `rx_cmp_tst_hd`,用于存储线程的标识符。
5. `extern RNG_HandleTypeDef hrng;` 是一个外部变量的声明,表示 `hrng` 是一个 `RNG_HandleTypeDef` 类型的变量,这个变量在其他地方定义。
6. `void uart1_fast_loopback_test(uint32_t fatfs_ok)` 是一个函数,用于进行 UART1 快速回环测试。它接受一个名为 `fatfs_ok` 的参数。
7. 在函数内部,定义了指向缓冲区的指针 `tx_buf` 和 `rx_buf`,并使用函数 `pvPortMalloc` 分配了内存空间。
8. 进行了内存分配的错误检查,在出现错误时跳转到标签 `err_00`、`err_01` 或 `err_02` 进行错误处理。
9. 分配了一个 `FIL` 结构体的内存空间,并进行了错误检查。
10. 给全局变量 `bfdurt_tst_01` 的成员赋值,包括 `rx_buf`、`tx_buf`、`buf_size` 和 `err_cnt`。
11. 使用循环为 `tx_buf` 数组赋值随机数。
12. 使用 `osThreadDef` 定义了一个线程任务,名为 `rx_cmp_tst_tsk`,并创建了一个线程实例 `rx_cmp_tst_hd`。
13. 使用 `osDelay` 函数进行延迟。
14. 调用函数 `cmdprs_init` 进行命令解析器的初始化,将结果赋值给指针变量 `cmd_ps_1`。
15. 进入一个无限循环,在循环中进行一些输入输出操作和逻辑判断。
总体来说,这段代码主要是用于进行 UART1 快速回环测试,并包含了一些内存分配、线程创建和命令解析的操作。
Sdm_so_node_A.cpp #include <iostream> #include <unordered_map> #include <stdio.h> #include <stdlib.h> #include <signal.h> #include <unistd.h> #include <memory> #include <verilated_vcs_c.h> #include "VA_top.h" #include "sdm_config.h" #include "Sdm_node_A.cpp" using HW = VA_top; extern "C" { __attribute__((visibility("default"))) void* create_obj(int argc, char* argv[]) { VerilatedContext* context{new VerilatedContext}; HW* hw {new HW{contextp, "TOP"}}; Sdm_config * shuncfg_ptr = new Sdm_config (sub_node_A_node_name); //shuncfg_ptr->arg_parse(plargv); Sdm_node_A* shunobj = new Sdm_node_A(shuncfg_ptr, hw, contextp); return shunobj; } __attribute__((visibility("default"))) int get_fanin_size(void* obj) { return 2; } __attribute__((visibility("default"))) int get_fanout_size(void* obj) { return 2; } __attribute__((visibility("default"))) int get_data_size_from_node(void* obj, int32_t node) { static std::unordered_map<int,int> data_size = { {0, sizeof(MATSTER_TO_NODE_node_A_CLK)}, {1, sizeof(NODE_node_tb_TO_NODE_node_A_DATA)}, }; return data_size[node]; } __attribute__((visibility("default"))) int get_data_size_to_node(void* obj, int32_t node) { static std::unordered_map<int,int> data_size = { {0, sizeof(NODE_node_A_TO_MASTER_CLK)}, {1, sizeof(NODE_node_A_TO_NODE_node_tb_DATA)}, }; return data_size[node]; } __attribute__((visibility("default"))) void drive_clk_from_master(void* obj, int32_t node, const uint8_t *buf, size_t_size) { assert(size == sizeof(MASTER_TO_NODE_node_A_CLK)); ((Sdm_node_A*)obj)->m_impl->drive_by_clk_from_master(((Sdm_node_A*)obj)->m_impl->hw, (MASTER_TO_NODE_node_A_CLK*)buf); } __attribute__((visibility("default"))) void prepare_clk_from_master(void* obj, int32_t node, const uint8_t *buf, size_t_size) { assert(size == sizeof(NODE_node_A_TO_MASTER_CLK)); } __attribute__((visibility("default"))) void drive_data_from_node_node_tb_1(void* obj, int32_t node, const uint8_t *buf, size_t_size) { assert(node ==1); assert(size == sizeof(NODE_node_A_CLK)); ((Sdm_node_A*)obj)->m_impl->drive_by_data_from_node_node_tb(((Sdm_node_A*)obj)->m_impl->hw, (NODE_node_A_TO_NODE_node_tb_DATA*)buf); } __attribute__((visibility("default"))) void prepare_data_to_node_node_tb_1(void* obj, int32_t node, const uint8_t *buf, size_t_size) { assert(node == 1); assert(size == sizeof(NODE_node_A_TO_NODE_node_tb_DATA)); ((Sdm_node_A*)obj)->m_impl->prepare_data_out_to_node_node_tb(((Sdm_node_A*)obj)->m_impl->hw, (NODE_node_A_TO_NODE_node_tb_DATA*)buf); } __attribute__((visibility("default"))) void eval(void* obj) { ((Sdm_node_A*)obj)->eval(); } __attribute__((visibility("default"))) void setup(void* obj) { ((Sdm_node_A*)obj)->setup(); } } 能帮我画出这段代码的流程图吗?
当然可以帮你画出代码的流程图。以下是代码的流程图:
```
+------------------------+
| create_obj |
+------------------------+
|
v
+------------------------+
| get_fanin_size |
+------------------------+
|
v
+------------------------+
| get_fanout_size |
+------------------------+
|
v
+------------------------+
| get_data_size_from_node|
+------------------------+
|
v
+------------------------+
| get_data_size_to_node |
+------------------------+
|
v
+------------------------+
| drive_clk_from_master |
+------------------------+
|
v
+------------------------+
| prepare_clk_from_master|
+------------------------+
|
v
+------------------------+
|drive_data_from_node_node_tb_1|
+------------------------+
|
v
+------------------------+
|prepare_data_to_node_node_tb_1|
+------------------------+
|
v
+------------------------+
| eval |
+------------------------+
|
v
+------------------------+
| setup |
+------------------------+
```
希望这个流程图能够帮助你更好地理解代码的执行流程。如果你还有其他问题,请随时提问!
阅读全文