_, predicted = torch.max(output.data, 1)什么意思
时间: 2024-06-02 17:14:13 浏览: 172
这行代码是用于在PyTorch中得到输出中每个样本的预测标签(即预测结果中最大值的索引)。其中,下划线(_)表示忽略返回的第一个值(即最大值),predicted是一个张量,表示每个样本的预测标签。具体来说,torch.max(output.data, 1)会返回output.data在第1维上的最大值和对应的索引,然后predicted就是这个索引的张量。
相关问题
LDAM损失函数pytorch代码如下:class LDAMLoss(nn.Module): def __init__(self, cls_num_list, max_m=0.5, weight=None, s=30): super(LDAMLoss, self).__init__() m_list = 1.0 / np.sqrt(np.sqrt(cls_num_list)) m_list = m_list * (max_m / np.max(m_list)) m_list = torch.cuda.FloatTensor(m_list) self.m_list = m_list assert s > 0 self.s = s if weight is not None: weight = torch.FloatTensor(weight).cuda() self.weight = weight self.cls_num_list = cls_num_list def forward(self, x, target): index = torch.zeros_like(x, dtype=torch.uint8) index_float = index.type(torch.cuda.FloatTensor) batch_m = torch.matmul(self.m_list[None, :], index_float.transpose(1,0)) # 0,1 batch_m = batch_m.view((16, 1)) # size=(batch_size, 1) (-1,1) x_m = x - batch_m output = torch.where(index, x_m, x) if self.weight is not None: output = output * self.weight[None, :] target = torch.flatten(target) # 将 target 转换成 1D Tensor logit = output * self.s return F.cross_entropy(logit, target, weight=self.weight) 模型部分参数如下:# 设置全局参数 model_lr = 1e-5 BATCH_SIZE = 16 EPOCHS = 50 DEVICE = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') use_amp = True use_dp = True classes = 7 resume = None CLIP_GRAD = 5.0 Best_ACC = 0 #记录最高得分 use_ema=True model_ema_decay=0.9998 start_epoch=1 seed=1 seed_everything(seed) # 数据增强 mixup mixup_fn = Mixup( mixup_alpha=0.8, cutmix_alpha=1.0, cutmix_minmax=None, prob=0.1, switch_prob=0.5, mode='batch', label_smoothing=0.1, num_classes=classes) 帮我用pytorch实现模型在模型训练中使用LDAM损失函数
好的,以下是使用LDAM损失函数进行模型训练的示例代码:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from ldam_loss import LDAMLoss # 导入LDAM损失函数
# 定义模型
class MyModel(nn.Module):
def __init__(self):
super(MyModel, self).__init__()
self.conv1 = nn.Conv2d(3, 64, 3, padding=1)
self.bn1 = nn.BatchNorm2d(64)
self.conv2 = nn.Conv2d(64, 128, 3, padding=1)
self.bn2 = nn.BatchNorm2d(128)
self.conv3 = nn.Conv2d(128, 256, 3, padding=1)
self.bn3 = nn.BatchNorm2d(256)
self.fc1 = nn.Linear(256 * 4 * 4, 1024)
self.fc2 = nn.Linear(1024, 10)
def forward(self, x):
x = F.relu(self.bn1(self.conv1(x)))
x = F.max_pool2d(x, 2)
x = F.relu(self.bn2(self.conv2(x)))
x = F.max_pool2d(x, 2)
x = F.relu(self.bn3(self.conv3(x)))
x = F.max_pool2d(x, 2)
x = x.view(-1, 256 * 4 * 4)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
# 定义数据集和数据加载器
train_dataset = ... # 定义训练集
test_dataset = ... # 定义测试集
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=16, shuffle=True)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=16, shuffle=False)
# 定义LDAM损失函数
cls_num_list = ... # 定义每个类别的样本数量
criterion = LDAMLoss(cls_num_list, max_m=0.5, s=30)
# 定义优化器和学习率调度器
model = MyModel().to('cuda')
optimizer = optim.Adam(model.parameters(), lr=1e-3)
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.1)
# 训练模型
for epoch in range(50):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to('cuda'), target.to('cuda')
data, target_a, target_b, lam = mixup_fn(data, target)
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target_a, target_b, lam) # 使用LDAM损失函数
loss.backward()
nn.utils.clip_grad_norm_(model.parameters(), CLIP_GRAD) # 防止梯度爆炸
optimizer.step()
model.eval()
with torch.no_grad():
total = 0
correct = 0
for data, target in test_loader:
data, target = data.to('cuda'), target.to('cuda')
output = model(data)
_, predicted = torch.max(output.data, 1)
total += target.size(0)
correct += (predicted == target).sum().item()
acc = 100 * correct / total
print('Epoch {}: Test Acc = {}%'.format(epoch+1, acc))
scheduler.step()
```
在以上代码中,我们首先定义了一个名为`MyModel`的模型,然后定义了训练集和测试集的数据加载器。接着,我们使用LDAM损失函数来定义模型的损失函数,然后使用Adam优化器来训练模型。在每个epoch结束后,我们使用测试集来评估模型的性能,并使用学习率调度器来调整学习率。
# 定义测试函数 def test(model, test_loader, device): model.eval() correct = 0 total = 0 with torch.no_grad(): for index,adj,features,labels in test_loader: #adj, features, labels = adj.to(device), features.to(device), labels.to(device) output, _, _ = model(features) _, predicted = torch.max(output.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() acc = 100 * correct / total print('Accuracy: {:.2f}%'.format(acc))
这段代码是一个 PyTorch 模型的测试函数,用于在测试集上评估模型的准确率。函数接受三个参数:
- `model`:PyTorch 模型对象
- `test_loader`:测试数据集的数据加载器
- `device`:模型所在的设备,可以是 CPU 或 GPU
下面是这个函数的详细说明:
1. `model.eval()`:将模型设置为评估模式,这会关闭一些训练时使用的特定功能,例如 dropout 和 batch normalization。
2. `correct = 0` 和 `total = 0`:初始化正确预测的数量和测试样本的总数量。
3. `with torch.no_grad():`:在评估模式下,我们不需要计算梯度,因此使用 `torch.no_grad()` 上下文管理器来关闭梯度计算。
4. `for index,adj,features,labels in test_loader:`:迭代测试集数据加载器,加载测试数据的节点特征、邻接矩阵和标签。
5. `output, _, _ = model(features)`:使用模型预测节点标签,不需要输出中间层的表示或 attention 分数,因此用下划线 `_` 忽略这些值。
6. `_, predicted = torch.max(output.data, 1)`:从输出中找到每个节点标签的预测值,并计算预测的类别。
7. `total += labels.size(0)` 和 `correct += (predicted == labels).sum().item()`:更新测试样本的总数和正确预测的数量。
8. `acc = 100 * correct / total`:计算测试集准确率。
9. `print('Accuracy: {:.2f}%'.format(acc))`:打印测试集准确率。
这个测试函数可以用于对训练好的图神经网络模型进行测试,得到模型在测试集上的准确率。
阅读全文