PCL中汉明距离匹配点对代码
时间: 2023-07-10 20:13:03 浏览: 84
PCL中可以使用`pcl::search::KdTree`实现点云的匹配,然后利用汉明距离计算匹配点对。以下是一个示例代码:
```cpp
#include <pcl/point_cloud.h>
#include <pcl/point_types.h>
#include <pcl/kdtree/kdtree_flann.h>
#include <iostream>
typedef pcl::PointXYZ PointT;
typedef pcl::PointCloud<PointT> PointCloudT;
int main()
{
// 创建两个点云
PointCloudT::Ptr cloud1(new PointCloudT);
PointCloudT::Ptr cloud2(new PointCloudT);
// 填充点云
cloud1->push_back(PointT(1, 1, 1));
cloud1->push_back(PointT(2, 2, 2));
cloud1->push_back(PointT(3, 3, 3));
cloud2->push_back(PointT(1, 1, 1));
cloud2->push_back(PointT(2, 2, 2));
cloud2->push_back(PointT(4, 4, 4));
// 创建KdTree
pcl::search::KdTree<PointT> kdtree;
kdtree.setInputCloud(cloud2);
// 为cloud1中的每个点在cloud2中寻找最近邻
for (int i = 0; i < cloud1->size(); ++i)
{
std::vector<int> indices(1);
std::vector<float> distances(1);
kdtree.nearestKSearch(cloud1->at(i), 1, indices, distances);
// 计算汉明距离
int hamming_distance = 0;
std::bitset<256> descriptor1(cloud1->at(i).descriptor);
std::bitset<256> descriptor2(cloud2->at(indices[0]).descriptor);
for (int j = 0; j < 256; ++j)
{
if (descriptor1[j] != descriptor2[j])
hamming_distance++;
}
std::cout << "Point " << i << " in cloud1 is matching point " << indices[0] << " in cloud2 with hamming distance = " << hamming_distance << std::endl;
}
return 0;
}
```
其中,`PointCloudT`是点云类型,包含了每个点的坐标和描述子。在代码中,我们创建了两个点云`cloud1`和`cloud2`,并将它们填充为三个点。然后,我们创建了一个`pcl::search::KdTree`对象`kdtree`,将`cloud2`作为输入点云,从而建立了点云间的索引。接下来,我们遍历`cloud1`中的每个点,利用`kdtree`在`cloud2`中寻找最近邻,并计算汉明距离。最后,输出匹配点对和汉明距离。
阅读全文