一个常用的股票价格变化数学模型可以用以下差分方程表示: x n =x n−1 +Δtμx n−1 +σx n−1 Δt r n−1 (1) 其中 x n 是 t n 时刻的股票价格,Δt 是两个时间之间的间隔(Δt=t n -t n-1 ),μ 是股票价格的增长率,σ 是股票价格的波动率,r 0 ,...,r n-1 是正态分布的随机数(均值为 0,标准差为单位标准差)。股票的初始价格 x 0 和μ,σ,Δt 都作为输入数据。 注意:(1)是一个关于连续价格方程 x(t)的随机微分方程的前向欧拉离散化: dt dx =μx+σN(t) 其中 N(t) 是所谓的白噪随机时间序列信号。这样的方程在股票价格的模拟中占有中心地位。请你用 Python 实现(1)。假设 n=0, …, N(N=5000步),时间 T=180 天,步长 Δt=T/N。 请根据提示,在右侧编辑器补充代码,完成函数编写,通过随机游走模拟股票价格,并绘图。 ∙simulate(p0,mu,sigma,T,N): 参数 p0,mu,sigma 分别对应公式(1)中的x 0 ,μ,σ,T 表示模拟时间(单位为天数), N 表示模拟步数(此时,公式(1)中步长Δt=T/N);函数返回0..N步内(含N), 每一步股票价格构成的向量; ∙draw_picture(prices): 绘制股票价格变化趋势图,并保存图片。 要求: 横轴为模拟步数,坐标轴范围为[-100,5200];纵轴为股票价格,坐标轴范围为[8,29]; 图片大小设为 8*4 (单位为 inch);
时间: 2024-03-12 15:44:38 浏览: 165
一年生植物的繁殖-matlab差分方程
```python
import numpy as np
import matplotlib.pyplot as plt
def simulate(p0, mu, sigma, T, N):
prices = np.zeros(N+1)
prices[0] = p0
dt = T/N
for i in range(1, N+1):
r = np.random.normal(0, 1)
prices[i] = prices[i-1] + dt*mu*prices[i-1] + sigma*np.sqrt(dt)*prices[i-1]*r
return prices
def draw_picture(prices):
fig, ax = plt.subplots(figsize=(8, 4))
ax.plot(prices)
ax.set_xlim([-100, 5200])
ax.set_ylim([8, 29])
ax.set_xlabel('Step')
ax.set_ylabel('Stock Price')
ax.set_title('Stock Price Simulation')
plt.savefig('stock_price.png')
```
使用示例:
```python
prices = simulate(20, 0.1, 0.2, 180, 5000)
draw_picture(prices)
```
阅读全文