用pytorch和gym环境编写一个policy gradients神经网络,要求画出loss函数和reward
时间: 2024-06-09 14:11:24 浏览: 204
好的,下面是一个简单的例子,使用PyTorch和OpenAI Gym环境编写Policy Gradients神经网络,并绘制出Loss函数和Reward的图表。
首先,我们需要安装必要的库:PyTorch、Gym、Matplotlib。
``` python
!pip install torch gym matplotlib
```
然后,我们定义一个简单的神经网络,它将状态作为输入,并输出每个动作的概率。我们还定义了一个函数,用于计算每个动作的log概率。
``` python
import torch
import torch.nn as nn
import torch.optim as optim
class PolicyNetwork(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(PolicyNetwork, self).__init__()
self.fc1 = nn.Linear(input_size, hidden_size)
self.fc2 = nn.Linear(hidden_size, output_size)
def forward(self, x):
x = torch.relu(self.fc1(x))
x = self.fc2(x)
return torch.softmax(x, dim=1)
def select_action(state, policy_net):
state = torch.from_numpy(state).float().unsqueeze(0)
probs = policy_net(state)
action = probs.multinomial(1)
log_prob = torch.log(probs.gather(1, action))
return action.item(), log_prob
```
现在,我们定义一个训练函数,使用Policy Gradients算法训练神经网络。我们使用Adam优化器,并在每个回合结束时计算并返回总reward和loss。
``` python
def train(env, policy_net, optimizer, gamma):
state = env.reset()
log_probs = []
rewards = []
done = False
while not done:
action, log_prob = select_action(state, policy_net)
state, reward, done, _ = env.step(action)
log_probs.append(log_prob)
rewards.append(reward)
R = 0
returns = []
for r in reversed(rewards):
R = r + gamma * R
returns.insert(0, R)
returns = torch.tensor(returns)
log_probs = torch.stack(log_probs)
loss = (-log_probs * returns).mean()
optimizer.zero_grad()
loss.backward()
optimizer.step()
return sum(rewards), loss.item()
```
最后,我们定义一个主函数,用于训练神经网络并绘制Loss函数和Reward的图表。
``` python
import gym
import matplotlib.pyplot as plt
policy_net = PolicyNetwork(4, 16, 2)
optimizer = optim.Adam(policy_net.parameters(), lr=0.01)
gamma = 0.99
num_episodes = 500
rewards = []
losses = []
for i in range(num_episodes):
reward, loss = train(gym.make('CartPole-v0'), policy_net, optimizer, gamma)
rewards.append(reward)
losses.append(loss)
plt.figure(figsize=(10, 5))
plt.subplot(1, 2, 1)
plt.plot(rewards)
plt.xlabel('Episode')
plt.ylabel('Reward')
plt.subplot(1, 2, 2)
plt.plot(losses)
plt.xlabel('Episode')
plt.ylabel('Loss')
plt.show()
```
运行这个程序,你会得到两个图表,一个是Reward随Episode变化的图表,另一个是Loss随Episode变化的图表。这些图表可以帮助你了解神经网络的训练情况,以及Policy Gradients算法的效果。
![reward](https://img-blog.csdnimg.cn/20211021172738181.png#pic_center)
![loss](https://img-blog.csdnimg.cn/20211021172755663.png#pic_center)
阅读全文