for i in range(0, batch_size * num_batches, batch_size):initial_indices_per_batch = initial_indices[i: i + batch_size] X = [data(j) for j in initial_indices_per_batch] Y = [data(j + 1) for j in initial_indices_per_batch] yield torch.tensor(X), torch.tensor(Y)

时间: 2024-04-03 07:30:37 浏览: 14
这段代码是一个数据批次生成器函数,它的作用是将数据集划分成多个批次,每个批次包含 batch_size 个子序列。其中,initial_indices 是数据集的所有子序列的起始索引,num_batches 是数据集被划分成的批次数。对于每个批次,函数会从 initial_indices 中随机选取 batch_size 个起始索引,然后根据这些起始索引从数据集中获取对应的子序列,分别赋值给 X 和 Y,最后使用 yield 语句将数据批次以 tensor 的形式返回,方便模型的训练和评估。
相关问题

class PPOMemory: def __init__(self, batch_size): self.states = [] self.probs = [] self.vals = [] self.actions = [] self.rewards = [] self.dones = [] self.batch_size = batch_size def sample(self): batch_step = np.arange(0, len(self.states), self.batch_size) indices = np.arange(len(self.states), dtype=np.int64) np.random.shuffle(indices) batches = [indices[i:i+self.batch_size] for i in batch_step] return np.array(self.states),np.array(self.actions),np.array(self.probs),\ np.array(self.vals),np.array(self.rewards),np.array(self.dones),batches def push(self, state, action, probs, vals, reward, done): self.states.append(state) self.actions.append(action) self.probs.append(probs) self.vals.append(vals) self.rewards.append(reward) self.dones.append(done) def clear(self): self.states = [] self.probs = [] self.actions = [] self.rewards = [] self.dones = [] self.vals = []

这段代码是一个 PPO 算法中的经验回放(experience replay)类,用于存储和采样交互数据。具体来说,这个类有以下几个成员函数: 1. 构造函数 __init__:初始化经验回放缓存的大小 batch_size,并创建空的列表来存储状态、动作、概率、价值、奖励和完成标志等信息。 2. 采样函数 sample:将经验回放缓存中的数据按照 batch_size 分成若干个 batch,然后随机打乱数据索引,最后返回一个包含所有 batch 的列表。每个 batch 包含一个状态状态列表、一个动作列表、一个概率列表、一个价值列表、一个奖励列表和一个完成标志列表。 3. 存储函数 push:将交互数据(即一个状态 state、一个动作 action、一个概率 probs、一个价值 vals、一个奖励 reward 和一个完成标志 done)存储到经验回放缓存中。 4. 清空函数 clear:清空经验回放缓存,以便下一次使用。 整个经验回放类的作用是存储和采样交互数据,以便训练 PPO 算法时能够从多个交互轮次中有效地学习。其中,采样函数 sample 会将数据随机打乱,以避免过于相关的数据干扰训练。

然后我们加载数据并创然后我们加载数据并创建一个小的数据集子集,以加快对已实现的优化器的测试。请看pytorch文档,并创建 一个由50个大小为64的批次组成的小子集 两个数据处理程序,分别对所有样本和分批样本进行迭代 帮我按照题目要求补充完整我下面的代码 batch_size = 64 batches = 50 data = datasets.MNIST(root="./", transform=transforms, target_transform=None, download=True) data = Subset(...) gd_data_loader = DataLoader(...) data_loader = DataLoader(...)建一个小的数据集子集,以加快对已实现的优化器的测试。请看pytorch文档,并创建 一个由50个大小为64的批次组成的小子集 两个数据处理程序,分别对所有样本和分批样本进行迭代

可以按照以下方式补充代码: ```python import torch from torchvision import datasets, transforms from torch.utils.data import Subset, DataLoader batch_size = 64 batches = 50 # 加载MNIST数据集 transforms = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]) data = datasets.MNIST(root="./", transform=transforms, target_transform=None, download=True) # 创建小的数据集子集 subset_indices = range(batch_size * batches) data = Subset(data, subset_indices) # 创建两个数据处理程序,分别对所有样本和分批样本进行迭代 gd_data_loader = DataLoader(data, batch_size=batch_size, shuffle=True) data_loader = DataLoader(data, batch_size=len(data), shuffle=True) ``` 在上面的代码中,我们首先使用`datasets.MNIST`加载了MNIST数据集,并应用了一些转换,例如将图像转换为张量并进行归一化。然后,我们创建了一个由所有样本构成的`DataLoader`对象`data_loader`,用于对整个数据集进行迭代。我们还创建了一个由50个大小为64的批次组成的小子集,并使用`Subset`对象`data`来存储它。 最后,我们使用两个`DataLoader`对象`gd_data_loader`和`data_loader`,分别对分批样本和所有样本进行迭代。`gd_data_loader`具有批量大小为64,`data_loader`具有批量大小为数据集中的样本数,这些批次都是随机排列的。

相关推荐

最新推荐

recommend-type

node-v0.10.13-sunos-x86.tar.gz

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

课设毕设基于SSM的高校二手交易平台-LW+PPT+源码可运行.zip

课设毕设基于SSM的高校二手交易平台--LW+PPT+源码可运行
recommend-type

软件设计师讲义.md

软件设计师讲义.md
recommend-type

时间序列预测,股票方向应用,使用transformer-lstm融合的模型算法

适用人群 针对有一定机器学习和深度学习背景的专业人士,特别是那些对时间序列预测和Transformer以及LSTM模型有兴趣的人。需要一定的Python知识基础 适用场景 用于处理时间序列数据,尤其是在金融领域,示例是股票价格预测。Transformer模型和LSTM的混合使用表明,代码的目的是利用这两种模型的优势来提高预测准确性。 目标 代码的主要目标是利用Transformer模型和LSTM模型来预测时间序列数据,如股票价格。通过实现这两种模型,代码旨在提供一个强大的工具来进行更准确的时间序列分析和预测。
recommend-type

Autojs-PJYSDK-泡椒云网络验证-v1.15.zip

Autojs-PJYSDK-泡椒云网络验证-v1.15.zip
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

SPDK_NVMF_DISCOVERY_NQN是什么 有什么作用

SPDK_NVMF_DISCOVERY_NQN 是 SPDK (Storage Performance Development Kit) 中用于查询 NVMf (Non-Volatile Memory express over Fabrics) 存储设备名称的协议。NVMf 是一种基于网络的存储协议,可用于连接远程非易失性内存存储器。 SPDK_NVMF_DISCOVERY_NQN 的作用是让存储应用程序能够通过 SPDK 查询 NVMf 存储设备的名称,以便能够访问这些存储设备。通过查询 NVMf 存储设备名称,存储应用程序可以获取必要的信息,例如存储设备的IP地址、端口号、名称等,以便能
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。