python画基于随机森林模型的糖尿病数据集的诺莫图

时间: 2024-01-07 14:05:49 浏览: 22
抱歉,我之前的回答有误,糖尿病数据集不适合用诺莫图进行可视化。但是,随机森林模型可以用来对该数据集进行分类。以下是一个简单的示例代码,你可以参考它来实现: ```python from sklearn.ensemble import RandomForestClassifier from sklearn.datasets import load_diabetes from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score import numpy as np import matplotlib.pyplot as plt # 加载糖尿病数据集 diabetes = load_diabetes() X, y = diabetes.data, diabetes.target # 划分数据集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 训练随机森林模型 rf = RandomForestClassifier(n_estimators=100, random_state=42) rf.fit(X_train, np.where(y_train > 140, 1, 0)) # 根据阈值将糖尿病标签二值化 # 预测测试集 y_pred = rf.predict(X_test) # 计算准确率 acc = accuracy_score(np.where(y_test > 140, 1, 0), y_pred) # 根据阈值将糖尿病标签二值化 print(f'Accuracy: {acc:.4f}') # 画出特征重要性图 importances = rf.feature_importances_ indices = np.argsort(importances)[::-1] plt.figure() plt.title("Feature importances") plt.bar(range(X.shape[1]), importances[indices]) plt.xticks(range(X.shape[1]), indices) plt.xlim([-1, X.shape[1]]) plt.show() ``` 在上面的代码中,我们使用了随机森林模型对糖尿病数据集进行分类,并计算了模型的准确率。然后,我们使用 `feature_importances_` 属性来获取每个特征的重要性分数,并画出了特征重要性图。 注意,这里我们将糖尿病的标签根据阈值(140)进行了二值化,这只是一个简单的做法,实际应用中需要根据具体情况进行调整。

相关推荐

最新推荐

recommend-type

python 随机森林算法及其优化详解

优化随机森林算法,正确率提高1%~5%(已经有90%+的正确率,再调高会导致过拟合) 论文当然是参考的,毕竟出现早的算法都被人研究烂了,什么优化基本都做过。而人类最高明之处就是懂得利用前人总结的经验和制造的...
recommend-type

python实现随机森林random forest的原理及方法

本篇文章主要介绍了python实现随机森林random forest的原理及方法,详细的介绍了随机森林的原理和python实现,非常具有参考价值,有兴趣的可以了解一下
recommend-type

基于Python的图像数据增强Data Augmentation解析

主要介绍了基于Python的图像数据增强Data Augmentation解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
recommend-type

python按比例随机切分数据的实现

主要介绍了python按比例随机切分数据的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
recommend-type

python 实现对数据集的归一化的方法(0-1之间)

今天小编就为大家分享一篇python 实现对数据集的归一化的方法(0-1之间),具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

list根据id查询pid 然后依次获取到所有的子节点数据

可以使用递归的方式来实现根据id查询pid并获取所有子节点数据。具体实现可以参考以下代码: ``` def get_children_nodes(nodes, parent_id): children = [] for node in nodes: if node['pid'] == parent_id: node['children'] = get_children_nodes(nodes, node['id']) children.append(node) return children # 测试数
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。