搭建vgg16训练mnist
时间: 2023-09-03 08:12:01 浏览: 116
VGG16是一个经典的卷积神经网络模型,通常用于图像分类任务。而MNIST是一个手写数字数据集,包含了60000个训练样本和10000个测试样本。在这里,我们将探讨如何使用VGG16模型来训练MNIST数据集。
首先,我们需要导入必要的库和数据集。
```python
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()
x_train = x_train.astype("float32") / 255.0
x_test = x_test.astype("float32") / 255.0
```
接下来,我们需要将MNIST数据集的输入形状转换为3D格式,以适应VGG16模型的输入要求。
```python
x_train = tf.expand_dims(x_train, -1)
x_test = tf.expand_dims(x_test, -1)
```
然后,我们可以定义VGG16模型并对其进行编译。我们将使用交叉熵损失函数和Adam优化器来训练模型。
```python
model = keras.Sequential(
[
keras.Input(shape=(28, 28, 1)),
layers.Conv2D(64, kernel_size=(3, 3), activation="relu", padding="same"),
layers.Conv2D(64, kernel_size=(3, 3), activation="relu", padding="same"),
layers.MaxPooling2D(pool_size=(2, 2)),
layers.Conv2D(128, kernel_size=(3, 3), activation="relu", padding="same"),
layers.Conv2D(128, kernel_size=(3, 3), activation="relu", padding="same"),
layers.MaxPooling2D(pool_size=(2, 2)),
layers.Conv2D(256, kernel_size=(3, 3), activation="relu", padding="same"),
layers.Conv2D(256, kernel_size=(3, 3), activation="relu", padding="same"),
layers.Conv2D(256, kernel_size=(3, 3), activation="relu", padding="same"),
layers.MaxPooling2D(pool_size=(2, 2)),
layers.Conv2D(512, kernel_size=(3, 3), activation="relu", padding="same"),
layers.Conv2D(512, kernel_size=(3, 3), activation="relu", padding="same"),
layers.Conv2D(512, kernel_size=(3, 3), activation="relu", padding="same"),
layers.MaxPooling2D(pool_size=(2, 2)),
layers.Conv2D(512, kernel_size=(3, 3), activation="relu", padding="same"),
layers.Conv2D(512, kernel_size=(3, 3), activation="relu", padding="same"),
layers.Conv2D(512, kernel_size=(3, 3), activation="relu", padding="same"),
layers.MaxPooling2D(pool_size=(2, 2)),
layers.Flatten(),
layers.Dense(4096, activation="relu"),
layers.Dense(4096, activation="relu"),
layers.Dense(10, activation="softmax"),
]
)
model.compile(loss="sparse_categorical_crossentropy", optimizer="adam", metrics=["accuracy"])
```
最后,我们可以使用训练集对模型进行训练,并在测试集上评估模型的性能。
```python
model.fit(x_train, y_train, batch_size=128, epochs=10, validation_split=0.1)
test_scores = model.evaluate(x_test, y_test, verbose=2)
print("Test loss:", test_scores[0])
print("Test accuracy:", test_scores[1])
```
希望这个例子可以帮助你理解如何使用VGG16模型训练MNIST数据集。
阅读全文