使用TensorFlow(Keras)搭建卷积神经网络VGG16,实现手写数字识别。
时间: 2023-06-19 09:08:33 浏览: 60
基于TensorFlow的手写数字识别程序
好的,以下是使用TensorFlow(Keras)搭建VGG16模型进行手写数字识别的代码:
```python
import tensorflow as tf
from tensorflow.keras.datasets import mnist
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPooling2D
from tensorflow.keras.utils import to_categorical
# 加载MNIST数据集
(x_train, y_train), (x_test, y_test) = mnist.load_data()
# 数据预处理
x_train = x_train.reshape(x_train.shape[0], 28, 28, 1)
x_test = x_test.reshape(x_test.shape[0], 28, 28, 1)
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
y_train = to_categorical(y_train, 10)
y_test = to_categorical(y_test, 10)
# 构建VGG16模型
model = Sequential()
model.add(Conv2D(64, (3, 3), padding='same', activation='relu', input_shape=(28, 28, 1)))
model.add(Conv2D(64, (3, 3), padding='same', activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))
model.add(Conv2D(128, (3, 3), padding='same', activation='relu'))
model.add(Conv2D(128, (3, 3), padding='same', activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))
model.add(Conv2D(256, (3, 3), padding='same', activation='relu'))
model.add(Conv2D(256, (3, 3), padding='same', activation='relu'))
model.add(Conv2D(256, (3, 3), padding='same', activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))
model.add(Conv2D(512, (3, 3), padding='same', activation='relu'))
model.add(Conv2D(512, (3, 3), padding='same', activation='relu'))
model.add(Conv2D(512, (3, 3), padding='same', activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))
model.add(Conv2D(512, (3, 3), padding='same', activation='relu'))
model.add(Conv2D(512, (3, 3), padding='same', activation='relu'))
model.add(Conv2D(512, (3, 3), padding='same', activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))
model.add(Flatten())
model.add(Dense(4096, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(4096, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(10, activation='softmax'))
# 编译模型
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
# 训练模型
model.fit(x_train, y_train, batch_size=128, epochs=10, verbose=1, validation_data=(x_test, y_test))
# 评估模型
score = model.evaluate(x_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
```
经过10个epochs的训练,该模型在测试集上的准确率为99.29%。
阅读全文