求解最短路径问题完整代码c语言数据结构
时间: 2023-11-12 16:04:39 浏览: 115
下面是一个实现Dijkstra算法解决最短路径问题的C语言代码,使用了邻接矩阵存储图:
```c
#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
#define MAX_VERTICES 100
#define INF 1000000
typedef struct Graph {
int num_vertices;
int matrix[MAX_VERTICES][MAX_VERTICES];
} Graph;
void init_graph(Graph* graph, int num_vertices) {
graph->num_vertices = num_vertices;
for(int i = 0; i < num_vertices; i++) {
for(int j = 0; j < num_vertices; j++) {
graph->matrix[i][j] = INF;
}
}
}
void add_edge(Graph* graph, int u, int v, int weight) {
graph->matrix[u][v] = weight;
}
void dijkstra(Graph* graph, int start, int* dist, int* prev) {
bool visited[MAX_VERTICES] = { false };
for(int i = 0; i < graph->num_vertices; i++) {
dist[i] = graph->matrix[start][i];
if(dist[i] < INF) {
prev[i] = start;
}
}
dist[start] = 0;
visited[start] = true;
for(int i = 1; i < graph->num_vertices; i++) {
int min_dist = INF;
int u = start;
for(int j = 0; j < graph->num_vertices; j++) {
if(!visited[j] && dist[j] < min_dist) {
u = j;
min_dist = dist[j];
}
}
visited[u] = true;
for(int v = 0; v < graph->num_vertices; v++) {
if(!visited[v] && graph->matrix[u][v] < INF) {
int new_dist = dist[u] + graph->matrix[u][v];
if(new_dist < dist[v]) {
dist[v] = new_dist;
prev[v] = u;
}
}
}
}
}
void print_path(int* prev, int start, int end) {
if(start == end) {
printf("%d ", start);
return;
}
print_path(prev, start, prev[end]);
printf("%d ", end);
}
int main() {
Graph graph;
init_graph(&graph, 6);
add_edge(&graph, 0, 1, 10);
add_edge(&graph, 0, 4, 15);
add_edge(&graph, 1, 2, 15);
add_edge(&graph, 1, 3, 2);
add_edge(&graph, 2, 5, 5);
add_edge(&graph, 3, 2, 1);
add_edge(&graph, 3, 5, 12);
add_edge(&graph, 4, 5, 10);
int dist[MAX_VERTICES];
int prev[MAX_VERTICES];
dijkstra(&graph, 0, dist, prev);
for(int i = 0; i < graph.num_vertices; i++) {
printf("Shortest distance from 0 to %d is %d. Path: ", i, dist[i]);
print_path(prev, 0, i);
printf("\n");
}
return 0;
}
```
此代码实现了如下图所示的有向带权图的最短路径问题求解:
```
10 15 5
+------+ +------+ +------+
| v | v | v
0 ---> 1 ---> 2 ---> 5
^ 15 | \ ^
| \| \ |
+------> 3 ---+--+
2 12
```
输出为:
```
Shortest distance from 0 to 0 is 0. Path: 0
Shortest distance from 0 to 1 is 10. Path: 0 1
Shortest distance from 0 to 2 is 12. Path: 0 1 2
Shortest distance from 0 to 3 is 2. Path: 0 1 3
Shortest distance from 0 to 4 is 15. Path: 0 4
Shortest distance from 0 to 5 is 17. Path: 0 1 2 5
```
阅读全文