对于稳定性压降,Agarwal等指出,稳定性压降应大于或者等于列管式固定床层压降的10%,即
时间: 2024-01-20 12:24:53 浏览: 103
是的,Agarwal等指出,对于固定床反应器中的气体分布板,其稳定性压降应该大于或等于列管式固定床层压降的10%。稳定性压降是指气体通过分布板时所产生的压力损失,主要包括孔板阻力和摩擦阻力等。在固定床反应器中,气体流经固定床层时会产生一定的压降,因此气体分布板的稳定性压降应该至少是固定床层压降的10%。这样可以确保气体通过分布板时的压力损失不会对固定床层的流动产生过大的影响,从而保证反应器的稳定性和性能。
相关问题
SBX模拟二进制交叉
### SBX (Simulated Binary Crossover) in Genetic Algorithms Implementation and Usage
In the context of genetic algorithms, crossover operations play a crucial role in generating new offspring from parent solutions. For continuous search spaces, Simulated Binary Crossover (SBX), proposed by K. Deb and R. B. Agarwal, is widely used due to its effectiveness[^1]. This operator mimics traditional one-point or two-point crossovers but adapts them specifically for real-valued parameters.
#### Definition and Characteristics
The primary characteristic of SBX lies in how it creates children that are closer to their parents compared with other methods like uniform mutation. The probability distribution function ensures this behavior while allowing occasional distant jumps within feasible bounds. Such properties make SBX particularly suitable when dealing with multi-objective optimization problems where maintaining diversity among population members remains essential.
#### Mathematical Formulation
Given two parent individuals \( P_1 \) and \( P_2 \), let us denote child individual as \( Q_i \). To generate each component value of these children:
If both parents have identical values at some position i.e., \( p_{xi} = p_{yi} \):
\[ q_i = p_xi \]
Otherwise,
Let's define β based on whether we want more exploration (\( u < 0.5 \)) or exploitation (\( u >= 0.5 \)):
For \(u<0.5\),
\[ \beta_q=2u^{(\frac{1}{n_c+1})}\]
And for \(u>=0.5\),
\[ \beta_q=(\frac{(2*(1-u))}{((1-u)^{\frac{n_c+1}{nc}})})^{\frac{1}{nc+1}}\]
Where nc controls the spread factor around better parent solution during reproduction process.
Finally calculate qi using following equations depending upon which parent has smaller xi :
When px<=py,
If rand()<0.5 then
qi=0.5*((px+(βq)*(py−px)))
Else
qi=0.5*((py-(βq)*(py-px)))
This procedure repeats until all components get assigned appropriate values forming complete offspring vectors Qi.
```matlab
function [child1, child2] = sbx(parent1, parent2, eta_c)
% Implementing simulated binary crossover operation between two parents
dim = length(parent1);
for i = 1:dim
if rand() <= 0.5
% Calculate beta according to given formulae
if abs(parent1(i)-parent2(i)) > eps
if rand() < 0.5
beta = (2*rand())^(1/(eta_c+1));
else
beta = (1/(2*(1-rand())))^(1/(eta_c+1));
end
child1(i) = 0.5 * ((1 + beta)*min([parent1(i); parent2(i)]) ...
+(1-beta)*max([parent1(i); parent2(i)]));
child2(i) = 0.5 * ((1 - beta)*min([parent1(i); parent2(i)]) ...
+(1+beta)*max([parent1(i); parent2(i)]));
else
child1(i) = parent1(i);
child2(i) = parent2(i);
end
else
child1(i) = parent1(i);
child2(i) = parent2(i);
end
end
```
python使用NSGA-II进行多目标优化并可视化结果
在Python中,非支配排序遗传算法II(NSGA-II)是一种常用的用于解决多目标优化问题的进化计算方法。它由Deb、Pratap、Agarwal和Meyarivan于2002年提出,是一种改进版的非支配排序遗传算法(NSGA)。NSGA-II通过保持种群多样性,同时考虑每个个体的目标函数值和它们之间的相对优势,来生成一系列非劣解,即帕累托前沿。
要使用Python进行NSGA-II的多目标优化并可视化结果,通常会涉及以下几个步骤:
1. **导入库**:首先需要安装`deap`库(Distributed Evolutionary Algorithms in Python),它是专门用于遗传算法和进化策略的Python模块,以及`matplotlib`或`plotly`等可视化库。
```python
import numpy as np
from deap import base, creator, tools
import matplotlib.pyplot as plt
```
2. **设置问题定义**:创建一个creator对象,定义适应度函数和决策变量的范围。
```python
creator.create("FitnessMulti", base.Fitness, weights=(-1.0, -1.0)) # 两个目标,负权值表示最小化
creator.create("Individual", list, fitness=creator.FitnessMulti)
toolbox = base.Toolbox()
toolbox.register("attr_float", random.uniform, low=-10, high=10)
toolbox.register("individual", tools.initRepeat, creator.Individual, toolbox.attr_float, n=2) # 假设有两个决策变量
```
3. **选择、交叉和变异操作**:定义适应度函数评估,选择策略(如轮盘赌选择),交叉和变异方法。
4. **NSGA-II循环**:执行NSGA-II的核心算法,包括初始化种群,评价适应度,选择,交叉,变异,并更新非支配列表。
5. **保存和可视化**:遍历最优解集,将它们保存到文件或绘制成二维散点图,显示目标函数的权衡关系。
```python
fronts = tools.sortNondominated(toolbox.population, k=len(toolbox.population), first_front_only=False)
for front in fronts:
for ind in front:
ind.fitness.values[0] = -ind.fitness.values[0] # 因为原始是最大化,这里反向映射
... # 可视化代码,例如:
plt.scatter(ind[0], ind[1]) # 如果只有两个目标,可以用scatter绘制
plt.xlabel('目标1')
plt.ylabel('目标2')
plt.show()
```
阅读全文
相关推荐
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![.pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)