卷积神经网络识别数字matlab代码
时间: 2023-10-22 22:22:05 浏览: 103
基于MATLAB实现的手写数字的识别效率,用卷积神经网络算法来实现,能够显现百分之九十以上的识别率+使用说明文档
以下是一个简单的卷积神经网络(CNN)在MATLAB中识别手写数字的示例代码。这个例子基于MNIST数据集,它包含60000个训练图像和10000个测试图像,每个图像都是28x28像素大小的灰度图像。
首先,我们加载MNIST数据集并预处理它:
```matlab
% Load the MNIST data
[XTrain, YTrain, XTest, YTest] = digitTrain4DArrayData;
% Normalize the data
XTrain = normalizeData(XTrain);
XTest = normalizeData(XTest);
% Convert the labels to categorical
YTrain = categorical(YTrain);
YTest = categorical(YTest);
```
接下来,我们定义CNN的架构:
```matlab
layers = [
imageInputLayer([28 28 1])
convolution2dLayer(3, 8, 'Padding', 'same')
batchNormalizationLayer
reluLayer
maxPooling2dLayer(2, 'Stride', 2)
convolution2dLayer(3, 16, 'Padding', 'same')
batchNormalizationLayer
reluLayer
maxPooling2dLayer(2, 'Stride', 2)
convolution2dLayer(3, 32, 'Padding', 'same')
batchNormalizationLayer
reluLayer
fullyConnectedLayer(10)
softmaxLayer
classificationLayer];
```
这个CNN由三个卷积层和两个最大池化层组成,然后是一个全连接层和一个softmax分类器。
接下来,我们定义训练选项:
```matlab
options = trainingOptions('adam', ...
'InitialLearnRate', 0.01, ...
'MaxEpochs', 10, ...
'Shuffle', 'every-epoch', ...
'ValidationData', {XTest, YTest}, ...
'Verbose', false, ...
'Plots', 'training-progress');
```
我们使用Adam优化器,学习率为0.01,最大训练轮数为10,并且在每个epoch之后重新打乱数据。
最后,我们使用训练数据和训练选项来训练CNN:
```matlab
net = trainNetwork(XTrain, YTrain, layers, options);
```
使用训练好的CNN来预测测试图像的标签:
```matlab
YPred = classify(net, XTest);
```
最后,我们计算CNN在测试集上的准确率:
```matlab
accuracy = sum(YPred == YTest) / numel(YTest);
fprintf('Accuracy: %0.2f%%\n', accuracy * 100);
```
完整的代码如下:
```matlab
% Load the MNIST data
[XTrain, YTrain, XTest, YTest] = digitTrain4DArrayData;
% Normalize the data
XTrain = normalizeData(XTrain);
XTest = normalizeData(XTest);
% Convert the labels to categorical
YTrain = categorical(YTrain);
YTest = categorical(YTest);
% Define the CNN architecture
layers = [
imageInputLayer([28 28 1])
convolution2dLayer(3, 8, 'Padding', 'same')
batchNormalizationLayer
reluLayer
maxPooling2dLayer(2, 'Stride', 2)
convolution2dLayer(3, 16, 'Padding', 'same')
batchNormalizationLayer
reluLayer
maxPooling2dLayer(2, 'Stride', 2)
convolution2dLayer(3, 32, 'Padding', 'same')
batchNormalizationLayer
reluLayer
fullyConnectedLayer(10)
softmaxLayer
classificationLayer];
% Define the training options
options = trainingOptions('adam', ...
'InitialLearnRate', 0.01, ...
'MaxEpochs', 10, ...
'Shuffle', 'every-epoch', ...
'ValidationData', {XTest, YTest}, ...
'Verbose', false, ...
'Plots', 'training-progress');
% Train the CNN
net = trainNetwork(XTrain, YTrain, layers, options);
% Predict the labels of the test images
YPred = classify(net, XTest);
% Calculate the accuracy
accuracy = sum(YPred == YTest) / numel(YTest);
fprintf('Accuracy: %0.2f%%\n', accuracy * 100);
```
注意,这只是一个简单的示例代码。实际上,您可以通过调整CNN的架构和训练选项来获得更好的性能。
阅读全文