matlab代码经RANSAC过滤的SIFT匹配来计算仿射变换,不能再使用VLFeat提供的任何函数。,可以使用仿射变换通过RANSAC过滤嘈杂的SIFT匹配,输入:x1和x2是对应集(n×2矩阵)。ransac_thr和ransac_iter是RANSAC的误差阈值和迭代次数。 输出:3×3仿射变换。 ,仿射变换将x1变换为x2。可视化内点和变换后模板的边界以验证您的实现
时间: 2024-03-24 11:35:57 浏览: 71
好的,这里是Matlab代码实现经RANSAC过滤的SIFT匹配来计算仿射变换。
```
function [affine_transform] = sift_affine_ransac(x1, x2, ransac_thr, ransac_iter)
% x1和x2是对应集(n×2矩阵)
% ransac_thr和ransac_iter是RANSAC的误差阈值和迭代次数
% 输出:3×3仿射变换。仿射变换将x1变换为x2
max_inliers = 0; % 最大内点数
affine_transform = eye(3); % 初始化仿射变换矩阵
for i = 1:ransac_iter
% 随机选择3个点
rand_idx = randperm(size(x1, 1), 3);
src_pts = x1(rand_idx, :);
dst_pts = x2(rand_idx, :);
% 计算仿射变换矩阵
A = [src_pts(:,1), src_pts(:,2), ones(size(src_pts, 1), 1), zeros(size(src_pts, 1), 3);
zeros(size(src_pts, 1), 3), src_pts(:,1), src_pts(:,2), ones(size(src_pts, 1), 1)];
b = [dst_pts(:,1); dst_pts(:,2)];
affine_vec = pinv(A) * b;
affine_transform_tmp = [affine_vec(1:3)'; affine_vec(4:6)'; 0 0 1];
% 计算所有点的误差
x1_transformed = affine_transform_tmp * [x1, ones(size(x1, 1), 1)]';
x1_transformed = x1_transformed(1:2, :)';
dist = sqrt(sum((x1_transformed - x2).^2, 2));
% 统计内点数
inlier_idx = find(dist <= ransac_thr);
inlier_num = numel(inlier_idx);
% 更新最大内点数和仿射变换矩阵
if inlier_num > max_inliers
max_inliers = inlier_num;
affine_transform = affine_transform_tmp;
end
end
% 可视化内点和变换后模板的边界
x1_transformed = affine_transform * [x1, ones(size(x1, 1), 1)]';
x1_transformed = x1_transformed(1:2, :)';
figure;
subplot(1, 2, 1);
imshow(img1); hold on;
plot(x1(:, 1), x1(:, 2), 'r+');
plot(x1(inlier_idx, 1), x1(inlier_idx, 2), 'go');
title('Template with inliers');
subplot(1, 2, 2);
imshow(img2); hold on;
plot(x2(:, 1), x2(:, 2), 'r+');
plot(x1_transformed(:, 1), x1_transformed(:, 2), 'go');
title('Transformed image with inliers');
end
```
希望以上代码能够帮到你!
阅读全文