TrainLoop中resume_checkpoint一般怎么设置举个例子
时间: 2024-05-07 10:20:56 浏览: 251
在 TrainLoop 中,`resume_checkpoint` 用于从已保存的模型检查点中恢复训练。下面是一个使用 `resume_checkpoint` 的示例:
```python
import torch
from transformers import GPT2LMHeadModel, GPT2Tokenizer
from transformers.optimization import AdamW
from transformers.trainer import Trainer, TrainingArguments
from torch.utils.data import DataLoader, Dataset
class MyDataset(Dataset):
def __init__(self, tokenizer, data_path):
self.tokenizer = tokenizer
self.examples = []
with open(data_path, "r", encoding="utf-8") as f:
for line in f:
line = line.strip()
if len(line) > 0:
self.examples.append(line)
def __len__(self):
return len(self.examples)
def __getitem__(self, idx):
return self.tokenizer.encode(self.examples[idx], add_special_tokens=True)
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
train_dataset = MyDataset(tokenizer, "train.txt")
train_loader = DataLoader(train_dataset, batch_size=4, shuffle=True)
model = GPT2LMHeadModel.from_pretrained("gpt2")
optimizer = AdamW(model.parameters(), lr=1e-5)
training_args = TrainingArguments(
output_dir="./checkpoints",
num_train_epochs=3,
per_device_train_batch_size=4,
save_steps=1000,
save_total_limit=2,
fp16=True,
)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
data_collator=lambda data: {"input_ids": torch.stack(data)},
optimizer=optimizer,
)
trainer.train()
```
以上代码将使用 GPT-2 模型来训练一个文本生成器。训练开始后,训练过程中每隔 1000 步就会保存一次模型检查点。假设在训练过程中需要停止,然后再次从检查点恢复训练,可以使用以下代码:
```python
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
data_collator=lambda data: {"input_ids": torch.stack(data)},
optimizer=optimizer,
resume_from_checkpoint="./checkpoints/checkpoint-1000",
)
trainer.train()
```
以上代码中,`resume_from_checkpoint` 设置为 `./checkpoints/checkpoint-1000`,表示从保存的第 1000 步检查点处恢复训练。注意,`resume_from_checkpoint` 的值应该是一个存在的检查点路径。
阅读全文