self.middle_block = TimestepEmbedSequential( ResBlock( ch, time_embed_dim, dropout, dims=dims, use_checkpoint=use_checkpoint, use_scale_shift_norm=use_scale_shift_norm, ), AttentionBlock( ch, use_checkpoint=use_checkpoint, num_heads=num_heads, num_head_channels=num_head_channels, use_new_attention_order=use_new_attention_order, ), ResBlock( ch, time_embed_dim, dropout, dims=dims, use_checkpoint=use_checkpoint, use_scale_shift_norm=use_scale_shift_norm, ), )
时间: 2023-04-11 08:01:43 浏览: 163
这是一个代码片段,它定义了一个名为 "middle_block" 的变量,它是一个由 TimestepEmbedSequential、ResBlock、AttentionBlock 和 ResBlock 组成的序列。其中,ResBlock 是一个残差块,用于增强模型的深度和性能;AttentionBlock 是一个注意力机制块,用于捕捉序列中的关键信息。这个代码片段的具体作用需要结合上下文来理解。
相关问题
解释class GraphMLPEncoder(FairseqEncoder): def __init__(self, args): super().__init__(dictionary=None) self.max_nodes = args.max_nodes self.emb_dim = args.encoder_embed_dim self.num_layer = args.encoder_layers self.num_classes = args.num_classes self.atom_encoder = GraphNodeFeature( num_heads=1, num_atoms=512*9, num_in_degree=512, num_out_degree=512, hidden_dim=self.emb_dim, n_layers=self.num_layer, ) self.linear = torch.nn.ModuleList() self.batch_norms = torch.nn.ModuleList() for layer in range(self.num_layer): self.linear.append(torch.nn.Linear(self.emb_dim, self.emb_dim)) self.batch_norms.append(torch.nn.BatchNorm1d(self.emb_dim)) self.graph_pred_linear = torch.nn.Linear(self.emb_dim, self.num_classes)
这段代码定义了一个名为GraphMLPEncoder的类,该类继承自FairseqEncoder类。在初始化方法中,它首先调用父类的初始化方法,并将dictionary参数设为None。然后,它从args参数中获取一些配置信息,如最大节点数(max_nodes)、嵌入维度(emb_dim)、编码器层数(num_layer)和类别数(num_classes)。
接下来,它创建了一个名为atom_encoder的GraphNodeFeature对象,该对象用于对图节点特征进行编码。它具有一些参数,如头数(num_heads)、原子数(num_atoms)、入度数(num_in_degree)、出度数(num_out_degree)、隐藏维度(hidden_dim)和层数(n_layers)。
然后,它创建了两个列表:linear和batch_norms。这些列表用于存储线性层和批归一化层的实例。它通过循环来创建多个线性层和批归一化层,并将它们添加到相应的列表中。
最后,它创建了一个线性层graph_pred_linear,该层将嵌入维度映射到类别数。这个线性层用于图预测任务中的分类操作。
def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None): super().__init__() self.positional_embedding = nn.Parameter(torch.randn(spacial_dim ** 2 + 1, embed_dim) / embed_dim ** 0.5) self.k_proj = nn.Linear(embed_dim, embed_dim) self.q_proj = nn.Linear(embed_dim, embed_dim) self.v_proj = nn.Linear(embed_dim, embed_dim) self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim) self.num_heads = num_heads
这段代码是一个基于自注意力机制的Transformer模型中的一部分。在这个模型中,输入被表示为一个由多个向量组成的序列,这些向量可以是文本中的单词或图像中的像素。该模型使用自注意力机制来计算每个向量与序列中其他向量之间的关系,从而产生一个新的向量表示。
在这里,`spacial_dim`表示序列中向量的数量(或者说是序列的长度)。`embed_dim`表示每个向量的维度。`num_heads`表示使用的多头注意力机制的数量。`output_dim`表示输出向量的维度,如果没有指定,则默认为`embed_dim`。
在`__init__`方法中,模型定义了四个线性变换(k_proj、q_proj、v_proj和c_proj),用于将输入向量映射到键、查询、值和输出空间中。此外,模型还定义了一个位置嵌入矩阵,用于将序列中每个向量的位置信息编码到向量表示中。最后,模型存储了使用的注意力头的数量。
阅读全文