if not self.t_relative: self.temporal_embedding = nn.Parameter(torch.zeros(1, self.num_Ttokens, embed_dim)) trunc_normal_(self.temporal_embedding, std=.02) self.pos_drop = nn.Dropout(p=drop_rate)
时间: 2023-06-19 13:06:51 浏览: 109
这是一个 Python 代码片段,其中定义了一个类的构造函数。如果 `self.t_relative` 为 False,则会创建一个形状为 `(1, self.num_Ttokens, embed_dim)` 的张量作为时间嵌入,并且使用截断正态分布对其进行初始化。接下来,会定义一个 dropout 层 `self.pos_drop`,其概率为 `drop_rate`。这些步骤通常用于构建自注意力机制模型中的位置编码。
相关问题
if use_temporal: self.num_ttokens = num_ttokens self.temporal_position_bias_table = nn.Parameter(torch.zeros(2 * num_ttokens - 1, num_heads)) trunc_normal_(self.temporal_position_bias_table, std=.02) t_coords = torch.arange(num_ttokens) t_relative_coords = t_coords[:, None] - t_coords[None, :] t_relative_coords += num_ttokens - 1 t_relative_coords = t_relative_coords.view(-1) self.register_buffer("t_relative_coords", t_relative_coords)
这段代码是在定义一个Transformer模型的时候使用的,其中包含了对时间序列的处理。首先,如果use_temporal为True,则表示这个模型需要考虑时间维度的信息。num_ttokens表示时间序列的长度,temporal_position_bias_table是一个形状为(2*num_ttokens-1, num_heads)的可学习参数,用于在self-attention计算中加入时间维度的信息。trunc_normal_用于将temporal_position_bias_table进行初始化。接下来,t_coords表示时间序列的坐标,而t_relative_coords则表示时间序列中每个时间点与其他时间点之间的相对距离,t_relative_coords的形状为(num_ttokens, num_ttokens),其中每个元素都是一个相对距离值。我们将t_relative_coords的形状变为一维,以便在后续计算中使用。最后,使用register_buffer将t_relative_coords注册为一个buffer,这样它就可以在模型的前向计算中被使用。
if not self.t_relative: x = rearrange(x, '(b t) n c -> (b n) t c', b=B, t=T) x = x + self.temporal_embedding x = rearrange(x, '(b n) t c -> (b t) n c', b=B, t=T) x = self.pos_drop(x)
这段代码是一个 Transformer 模型中的位置编码部分,用于对输入序列进行位置编码,以便模型能够学习序列中每个元素的相对位置信息。
首先,如果`t_relative`为False,则将输入张量`x`的形状从`(batch_size, seq_length, hidden_size)`转换为`(batch_size * seq_length, hidden_size)`,其中`n`为每个位置的向量表示,`c`为每个向量的维度。
然后,对于每个时间步`t`,将其与一个位置嵌入向量相加。这些位置嵌入向量表示输入序列中每个元素的相对位置信息,并且根据时间步`t`的不同而不同。这种相对位置编码方式是 Transformer 模型的一个重要创新,可以有效地学习序列中元素的相对位置关系。
最后,将形状为`(batch_size * seq_length, hidden_size)`的张量重新转换为`(batch_size, seq_length, hidden_size)`的形状,然后将其输入到后续的模型中。`pos_drop`是一个 dropout 层,用于防止模型过拟合。
阅读全文