channels = cv2.split(img)

时间: 2024-05-20 10:17:55 浏览: 5
This line of code splits an input image "img" into its three color channels - blue, green, and red - and stores them in a list called "channels". The resulting list will have three elements, each of which is a 2D numpy array representing the intensity values of a single color channel.
相关问题

请解释一下这段代码 def hisEqulColor(img): ## 将RGB图像转换到YCrCb空间中 ycrcb = cv2.cvtColor(img, cv2.COLOR_BGR2YCR_CB) # 将YCrCb图像通道分离 channels = cv2.split(ycrcb) # 以下代码详细注释见官网: # https://docs.opencv.org/4.1.0/d5/daf/tutorial_py_histogram_equalization.html clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8)) clahe.apply(channels[0], channels[0]) cv2.merge(channels, ycrcb) cv2.cvtColor(ycrcb, cv2.COLOR_YCR_CB2BGR, img) return img

这段代码实现了对彩色图像的直方图均衡化,让图像的亮度分布更加均匀,从而增强图像的对比度和清晰度。具体步骤如下: 1.将RGB图像转换到YCrCb空间中,其中Y表示亮度,Cr和Cb分别表示色度的差异。这一步是为了将颜色信息和亮度信息分离开来。 2.将YCrCb图像通道分离,即将图像分为三个通道,分别是Y、Cr、Cb。 3.使用cv2.createCLAHE()函数创建一个对比度受限的自适应直方图均衡化对象clahe,其中clipLimit=2.0表示对比度的限制因子,tileGridSize=(8,8)表示将图像分为8x8个小块进行处理。 4.对Y通道进行直方图均衡化处理,即将clahe对象应用于channels[0]即可。 5.将处理好的Y通道和Cr、Cb通道重新合并成一张YCrCb图像。 6.将YCrCb图像转换回BGR空间,得到处理好的彩色图像。 7.返回处理好的彩色图像。

""" Contrast Limited Adaptive Histogram Equalization,CLAHE 对比度受限自适应直方图均衡 """ import cv2 # import numpy as np import matplotlib.pyplot as plt def show_img_with_matplotlib(color_img, title, pos): img_rgb = color_img[:, :, ::-1] plt.subplot(2, 5, pos) plt.imshow(img_rgb) plt.title(title, fontsize=8) plt.axis('off') def equalize_clahe_color_hsv(img): cla = cv2.createCLAHE(clipLimit=4.0) H, S, V = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2HSV)) eq_V = cla.apply(V) eq_image = cv2.cvtColor(cv2.merge([H, S, eq_V]), cv2.COLOR_HSV2BGR) return eq_image def equalize_clahe_color_lab(img): cla = cv2.createCLAHE(clipLimit=4.0) L, a, b = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2Lab)) eq_L = cla.apply(L) eq_image = cv2.cvtColor(cv2.merge([eq_L, a, b]), cv2.COLOR_Lab2BGR) return eq_image def equalize_clahe_color_yuv(img): cla = cv2.createCLAHE(clipLimit=4.0) Y, U, V = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2YUV)) eq_Y = cla.apply(Y) eq_image = cv2.cvtColor(cv2.merge([eq_Y, U, V]), cv2.COLOR_YUV2BGR) return eq_image def equalize_clahe_color(img): cla = cv2.createCLAHE(clipLimit=4.0) channels = cv2.split(img) eq_channels = [] for ch in channels: eq_channels.append(cla.apply(ch)) eq_image = cv2.merge(eq_channels) return eq_image # 加载图像 image = cv2.imread('D:/Documents/python/OpenCV/image/008.jpg') gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # 灰度图像应用 CLAHE clahe = cv2.createCLAHE(clipLimit=2.0) gray_image_clahe = clahe.apply(gray_image) # 使用不同 clipLimit 值 clahe.setClipLimit(5.0) gray_image_clahe_2 = clahe.apply(gray_image) clahe.setClipLimit(10.0) gray_image_clahe_3 = clahe.apply(gray_image) clahe.setClipLimit(20.0) gray_image_clahe_4 = clahe.apply(gray_image) # 彩色图像应用 CLAHE image_clahe_color = equalize_clahe_color(image) image_clahe_color_lab = equalize_clahe_color_lab(image) image_clahe_color_hsv = equalize_clahe_color_hsv(image) image_clahe_color_yuv = equalize_clahe_color_yuv(image) # 标题 plt.figure(figsize=(10, 4)) plt.suptitle("Color histogram equalization with cv2.equalizedHist() - not a good approach", fontsize=9, fontweight='bold') # 可视化 show_img_with_matplotlib(cv2.cvtColor(gray_image, cv2.COLOR_GRAY2BGR), "gray", 1) show_img_with_matplotlib(cv2.cvtColor(gray_image_clahe, cv2.COLOR_GRAY2BGR), "gray CLAHE clipLimit=2.0", 2) show_img_with_matplotlib(cv2.cvtColor(gray_image_clahe_2, cv2.COLOR_GRAY2BGR), "gray CLAHE clipLimit=5.0", 3) show_img_with_matplotlib(cv2.cvtColor(gray_image_clahe_3, cv2.COLOR_GRAY2BGR), "gray CLAHE clipLimit=10.0", 4) show_img_with_matplotlib(cv2.cvtColor(gray_image_clahe_4, cv2.COLOR_GRAY2BGR), "gray CLAHE clipLimit=20.0", 5) show_img_with_matplotlib(image, "color", 6) show_img_with_matplotlib(image_clahe_color, "clahe on each channel(BGR)", 7) show_img_with_matplotlib(image_clahe_color_lab, "clahe on each channel(LAB)", 8) show_img_with_matplotlib(image_clahe_color_hsv, "clahe on each channel(HSV)", 9) show_img_with_matplotlib(image_clahe_color_yuv, "clahe on each channel(YUV)", 10) plt.show()

CLAHE,即对比度受限自适应直方图均衡化,是一种用于增强图像对比度的方法。在计算图像直方图均衡化的过程中,CLAHE会先将图像分成许多小块,并对每个小块进行直方图均衡化。由于小块内的像素值范围较小,采取均衡化的结果会使得低对比度的区域增强,同时避免出现像素值过饱和的情况。CLAHE能够在保持图像整体视觉质量的同时,突出图像细节。在OpenCV库中,可以通过cv2.createCLAHE()函数来调用CLAHE算法。

相关推荐

ROWS = 150 COLS = 150 # # ROWS = 128 # COLS = 128 CHANNELS = 3 def read_image(file_path): img = cv2.imread(file_path, cv2.IMREAD_COLOR) return cv2.resize(img, (ROWS, COLS), interpolation=cv2.INTER_CUBIC) def predict(): TEST_DIR = 'D:/final/CatVsDog-master/media/img/' result = [] # model = load_model('my_model.h5') model = load_model('D:/final/CatVsDog-master/venv/Include/VGG/model.h5') test_images = [TEST_DIR + i for i in os.listdir(TEST_DIR)] count = len(test_images) # data = np.ndarray((count, CHANNELS, ROWS, COLS), dtype=np.uint8) data = np.ndarray((count, ROWS, COLS, CHANNELS), dtype=np.uint8) # print("图片网维度:") print(data.shape) for i, image_file in enumerate(test_images): image = read_image(image_file) # print() data[i] = image # data[i] = image.T if i % 250 == 0: print('处理 {} of {}'.format(i, count)) test = data predictions = model.predict(test, verbose=0) dict = {} urls = [] for i in test_images: ss = i.split('/') url = '/' + ss[3] + '/' + ss[4] + '/' + ss[5] urls.append(url) for i in range(0, len(predictions)): if predictions[i, 0] >= 0.5: print('I am {:.2%} sure this is a Dog'.format(predictions[i][0])) dict[urls[i]] = "图片预测为:关!" else: print('I am {:.2%} sure this is a Cat'.format(1 - predictions[i][0])) dict[urls[i]] = "图片预测为:开!" plt.imshow(test[i]) # plt.imshow(test[i].T) plt.show() # time.sleep(2) # print(dict) # for key,value in dict.items(): # print(key + ':' + value) return dict if __name__ == '__main__': result = predict() for i in result: print(i)

最新推荐

recommend-type

vb+SQL车辆管理系统设计(论文+源代码).zip

vb+SQL车辆管理系统设计(论文+源代码)
recommend-type

藏经阁-应用多活技术白皮书-40.pdf

本资源是一份关于“应用多活技术”的专业白皮书,深入探讨了在云计算环境下,企业如何应对灾难恢复和容灾需求。它首先阐述了在数字化转型过程中,容灾已成为企业上云和使用云服务的基本要求,以保障业务连续性和数据安全性。随着云计算的普及,灾备容灾虽然曾经是关键策略,但其主要依赖于数据级别的备份和恢复,存在数据延迟恢复、高成本以及扩展性受限等问题。 应用多活(Application High Availability,简称AH)作为一种以应用为中心的云原生容灾架构,被提出以克服传统灾备的局限。它强调的是业务逻辑层面的冗余和一致性,能在面对各种故障时提供快速切换,确保服务不间断。白皮书中详细介绍了应用多活的概念,包括其优势,如提高业务连续性、降低风险、减少停机时间等。 阿里巴巴作为全球领先的科技公司,分享了其在应用多活技术上的实践历程,从早期集团阶段到云化阶段的演进,展示了企业在实际操作中的策略和经验。白皮书还涵盖了不同场景下的应用多活架构,如同城、异地以及混合云环境,深入剖析了相关的技术实现、设计标准和解决方案。 技术分析部分,详细解析了应用多活所涉及的技术课题,如解决的技术问题、当前的研究状况,以及如何设计满足高可用性的系统。此外,从应用层的接入网关、微服务组件和消息组件,到数据层和云平台层面的技术原理,都进行了详尽的阐述。 管理策略方面,讨论了应用多活的投入产出比,如何平衡成本和收益,以及如何通过能力保鲜保持系统的高效运行。实践案例部分列举了不同行业的成功应用案例,以便读者了解实际应用场景的效果。 最后,白皮书展望了未来趋势,如混合云多活的重要性、应用多活作为云原生容灾新标准的地位、分布式云和AIOps对多活的推动,以及在多云多核心架构中的应用。附录则提供了必要的名词术语解释,帮助读者更好地理解全文内容。 这份白皮书为企业提供了全面而深入的应用多活技术指南,对于任何寻求在云计算时代提升业务韧性的组织来说,都是宝贵的参考资源。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB矩阵方程求解与机器学习:在机器学习算法中的应用

![matlab求解矩阵方程](https://img-blog.csdnimg.cn/041ee8c2bfa4457c985aa94731668d73.png) # 1. MATLAB矩阵方程求解基础** MATLAB中矩阵方程求解是解决线性方程组和矩阵方程的关键技术。本文将介绍MATLAB矩阵方程求解的基础知识,包括矩阵方程的定义、求解方法和MATLAB中常用的求解函数。 矩阵方程一般形式为Ax=b,其中A为系数矩阵,x为未知数向量,b为常数向量。求解矩阵方程的过程就是求解x的值。MATLAB提供了多种求解矩阵方程的函数,如solve、inv和lu等。这些函数基于不同的算法,如LU分解
recommend-type

触发el-menu-item事件获取的event对象

触发`el-menu-item`事件时,会自动传入一个`event`对象作为参数,你可以通过该对象获取触发事件的具体信息,例如触发的元素、鼠标位置、键盘按键等。具体可以通过以下方式获取该对象的属性: 1. `event.target`:获取触发事件的目标元素,即`el-menu-item`元素本身。 2. `event.currentTarget`:获取绑定事件的元素,即包含`el-menu-item`元素的`el-menu`组件。 3. `event.key`:获取触发事件时按下的键盘按键。 4. `event.clientX`和`event.clientY`:获取触发事件时鼠标的横纵坐标
recommend-type

藏经阁-阿里云计算巢加速器:让优秀的软件生于云、长于云-90.pdf

阿里云计算巢加速器是阿里云在2022年8月飞天技术峰会上推出的一项重要举措,旨在支持和服务于企业服务领域的创新企业。通过这个平台,阿里云致力于构建一个开放的生态系统,帮助软件企业实现从云端诞生并持续成长,增强其竞争力。该加速器的核心价值在于提供1对1的技术专家支持,确保ISV(独立软件供应商)合作伙伴能获得与阿里云产品同等的技术能力,从而保障用户体验的一致性。此外,入选的ISV还将享有快速在钉钉和云市场上线的绿色通道,以及与行业客户和投资机构的对接机会,以加速业务发展。 活动期间,包括百奥利盟、极智嘉、EMQ、KodeRover、MemVerge等30家企业成为首批计算巢加速器成员,与阿里云、钉钉以及投资界专家共同探讨了技术进步、产品融合、战略规划和资本市场的关键议题。通过这次合作,企业可以借助阿里云的丰富资源和深厚技术实力,应对数字化转型中的挑战,比如精准医疗中的数据处理加速、物流智慧化的升级、数字孪生的普及和云原生图数据库的构建。 阿里云计算巢加速器不仅是一个技术支持平台,也是企业成长的催化剂。它通过举办类似2023年2月的集结活动,展示了如何通过云计算生态的力量,帮助企业在激烈的竞争中找到自己的定位,实现可持续发展。参与其中的优秀企业如神策和ONES等,都在这个平台上得到了加速和赋能,共同推动了企业服务领域的创新与进步。总结来说,阿里云计算巢加速器是一个集技术、资源和生态支持于一体的全方位服务平台,旨在帮助企业软件产业在云端绽放光彩。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB矩阵方程求解与数据分析:在数据分析中的应用与案例

![MATLAB矩阵方程求解与数据分析:在数据分析中的应用与案例](https://img-blog.csdnimg.cn/img_convert/007dbf114cd10afca3ca66b45196c658.png) # 1. MATLAB矩阵方程求解理论基础** MATLAB中矩阵方程求解是数值分析中一个重要的课题。矩阵方程的形式一般为`Ax = b`,其中`A`是一个系数矩阵,`x`是未知向量,`b`是常数向量。求解矩阵方程的方法有很多,包括直接求解法和迭代求解法。 直接求解法通过对系数矩阵`A`进行分解,将矩阵方程转化为求解三角形方程组或线性方程组,从而得到未知向量`x`。常见
recommend-type

abap dialog单选框画屏

在ABAP中,可以使用Dialog Programming来创建屏幕和用户界面。要创建一个ABAP Dialog单选框画屏,可以按照以下步骤进行操作: 1. 首先,在ABAP编辑器中创建一个新的屏幕画面(Screen Painter)。 2. 在屏幕画面上,选择“元素”工具栏中的“单选按钮”(Radio Button)工具。 3. 在屏幕上点击并拖动鼠标,绘制一个单选按钮的区域。 4. 在属性窗口中,为单选按钮指定一个唯一的名称和描述。 5. 可以选择设置单选按钮的默认状态(选中或未选中)。 6. 如果需要,可以在屏幕上添加其他的单选按钮。 7. 完成屏幕设计后,保存并激活屏幕画面。 在A
recommend-type

藏经阁-玩转AIGC与应用部署-92.pdf

"《藏经阁-玩转AIGC与应用部署-92》是一本专为阿里云开发者设计的电子手册,聚焦于人工智能生成内容(AIGC)在传媒、电商、影视等行业中的应用与技术探讨。作者张亦驰(怀潜)和丁小虎(脑斧),以及阿里云的AnalyticDB、函数计算FC和大数据AI技术团队,共同分享了五篇深度技术文章。 书中的内容涵盖了以下几个关键知识点: 1. AIGC基础与应用:介绍了AIGC如何作为新兴的内容生产方式,通过大模型技术提高内容生产和创新性,如基于大模型的创作工具在实际场景中的应用。 2. 大模型实战:书中详细展示了如何利用Hologres(云数据库)结合大模型,如ChatGPT,来解决商家问题,实现智能化客服。通过Hologres+大模型,商家可以更高效地获取答案,提升服务质量。 3. AnalyticDB与LLM(大语言模型):阐述了如何利用AnalyticDB(ADB)构建企业专属的AIGC Chatbot,增强企业的自动化沟通能力。 4. 生产力提升:讨论了大模型如何解放人类生产力,从理论层面揭示了AIGC从概念到实际应用的转变,展现了其在内容生产中的革新作用。 5. 云产品部署实践:提供了具体的操作指南,例如5分钟内如何使用函数计算FC部署StableDiffusion服务,以及如何通过PAI一键部署AI绘画应用,让读者能够快速上手并进行云上实践。 6. 试用与学习资源:书中还鼓励读者尝试模型在线服务PAI-EAS和函数计算FC的免费试用,以便更好地理解和运用AIGC技术。 《藏经阁》不仅是技术指南,也是AIGC入门者和进阶者的宝典,帮助读者理解AIGC在智能时代的重要性和广泛应用,引导他们探索并掌握云上技术部署的实际操作。通过阅读这本书,读者不仅能深入了解AIGC的潜力,还能掌握阿里云提供的相关云产品,推动内容生产行业的创新发展。"