ZED相机物体识别代码
时间: 2023-08-06 18:20:09 浏览: 98
以下是使用ZED相机进行物体识别的示例代码(使用OpenCV和ZED SDK):
```python
import cv2
import numpy as np
import pyzed.sl as sl
# 初始化ZED相机
zed = sl.Camera()
init_params = sl.InitParameters()
init_params.camera_resolution = sl.RESOLUTION.HD720 # 设置相机分辨率
init_params.camera_fps = 30 # 设置相机帧率
err = zed.open(init_params)
if err != sl.ERROR_CODE.SUCCESS:
print("相机打开失败")
zed.close()
exit()
# 设置对象检测器
net = cv2.dnn.readNetFromDarknet("yolov4.cfg", "yolov4.weights") # 加载YOLOv4模型
net.setPreferableBackend(cv2.dnn.DNN_BACKEND_CUDA) # 设置CUDA后端
net.setPreferableTarget(cv2.dnn.DNN_TARGET_CUDA) # 设置CUDA目标
# 获取相机参数
camera_params = zed.get_camera_information().calibration_parameters.left_cam
# 创建Mat对象以存储图像
image_size = (camera_params.width, camera_params.height)
image_zed = sl.Mat(image_size[1], image_size[0], sl.MAT_TYPE.U8_C4)
# 创建窗口
cv2.namedWindow("ZED", cv2.WINDOW_NORMAL)
# 循环读取图像并进行物体检测
while True:
if zed.grab() == sl.ERROR_CODE.SUCCESS:
# 从相机中获取图像
zed.retrieve_image(image_zed, sl.VIEW.LEFT)
# 将图像转换为OpenCV格式
image_ocv = image_zed.get_data()
# 运行物体检测器
blob = cv2.dnn.blobFromImage(image_ocv, 1 / 255.0, (416, 416), swapRB=True, crop=False)
net.setInput(blob)
layer_names = net.getLayerNames()
output_layers = [layer_names[i[0] - 1] for i in net.getUnconnectedOutLayers()]
outputs = net.forward(output_layers)
# 解析输出并绘制边界框
class_ids = []
confidences = []
boxes = []
for output in outputs:
for detection in output:
scores = detection[5:]
class_id = np.argmax(scores)
confidence = scores[class_id]
if confidence > 0.5:
center_x = int(detection[0] * image_size[0])
center_y = int(detection[1] * image_size[1])
width = int(detection[2] * image_size[0])
height = int(detection[3] * image_size[1])
left = int(center_x - width / 2)
top = int(center_y - height / 2)
class_ids.append(class_id)
confidences.append(float(confidence))
boxes.append([left, top, width, height])
indices = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
for i in indices:
i = i[0]
box = boxes[i]
left = box[0]
top = box[1]
width = box[2]
height = box[3]
label = str(class_ids[i])
cv2.rectangle(image_ocv, (left, top), (left + width, top + height), (0, 255, 0), 2)
cv2.putText(image_ocv, label, (left, top), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
# 显示图像
cv2.imshow("ZED", image_ocv)
# 检查是否退出
key = cv2.waitKey(1)
if key & 0xFF == ord('q'):
break
# 关闭窗口和相机
cv2.destroyAllWindows()
zed.close()
```
这个示例代码使用YOLOv4模型进行物体检测,并且使用ZED SDK将图像从相机中读取到OpenCV中进行处理。请注意,这只是一个示例,你需要根据你的需求对代码进行适当的修改。