代码实现用PSO算法对Kmeans聚类中心的优化,并且进行可视化展示,要求与原本的Kmeans算法进行对比,数据用iris数据集
时间: 2024-02-23 08:56:44 浏览: 53
基于PSO粒子群优化的kmeans的聚类仿真,matlab2021a仿真测试。
5星 · 资源好评率100%
好的,我可以为您提供相关的代码实现。PSO算法是一种基于群体智能的优化算法,可以用于求解聚类中心的优化问题。下面是实现步骤:
1. 加载数据集
我们可以使用Scikit-learn库中的iris数据集,代码如下:
```python
from sklearn.datasets import load_iris
import pandas as pd
iris = load_iris()
df = pd.DataFrame(iris.data, columns=iris.feature_names)
data = df.values
```
2. 实现KMeans算法
KMeans算法是一种常用的聚类算法,我们可以使用Scikit-learn库中的KMeans来实现,代码如下:
```python
from sklearn.cluster import KMeans
kmeans = KMeans(n_clusters=3)
kmeans.fit(data)
y_kmeans = kmeans.predict(data)
```
3. 实现PSO算法
PSO算法需要定义粒子、粒子群、适应度函数等概念,代码如下:
```python
import numpy as np
import random
class Particle:
def __init__(self, dim):
self.position = np.zeros(dim)
self.velocity = np.zeros(dim)
self.best_position = np.zeros(dim)
self.fitness = float("inf")
self.best_fitness = float("inf")
class PSO:
def __init__(self, n_particles, dim, max_iter, lb, ub, w, c1, c2):
self.n_particles = n_particles
self.dim = dim
self.max_iter = max_iter
self.lb = lb
self.ub = ub
self.w = w
self.c1 = c1
self.c2 = c2
self.swarm = [Particle(dim) for i in range(n_particles)]
self.global_best_position = np.zeros(dim)
self.global_best_fitness = float("inf")
def optimize(self, fitness_func):
for i in range(self.max_iter):
for j in range(self.n_particles):
particle = self.swarm[j]
particle.velocity = self.w * particle.velocity + self.c1 * random.random() * (particle.best_position - particle.position) + self.c2 * random.random() * (self.global_best_position - particle.position)
particle.position = particle.position + particle.velocity
particle.position = np.clip(particle.position, self.lb, self.ub)
particle.fitness = fitness_func(particle.position)
if particle.fitness < particle.best_fitness:
particle.best_fitness = particle.fitness
particle.best_position = particle.position
if particle.fitness < self.global_best_fitness:
self.global_best_fitness = particle.fitness
self.global_best_position = particle.position
```
4. 定义适应度函数
适应度函数用于评价每个粒子的解的好坏程度,我们可以使用KMeans算法的误差平方和作为适应度函数,代码如下:
```python
def fitness_func(position):
kmeans = KMeans(n_clusters=3, init=position)
kmeans.fit(data)
return kmeans.inertia_
```
5. 运行PSO算法并可视化结果
我们可以运行PSO算法,并将优化后的聚类中心与KMeans算法的聚类中心进行对比,代码如下:
```python
import matplotlib.pyplot as plt
pso = PSO(n_particles=100, dim=12, max_iter=100, lb=-10, ub=10, w=0.5, c1=1, c2=2)
pso.optimize(fitness_func)
kmeans = KMeans(n_clusters=3)
kmeans.fit(data)
y_kmeans = kmeans.predict(data)
plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.scatter(data[:, 0], data[:, 1], c=y_kmeans, s=50, cmap='viridis')
plt.title('KMeans Clustering')
plt.subplot(1, 2, 2)
plt.scatter(data[:, 0], data[:, 1], c=pso.global_best_position, s=50, cmap='viridis')
plt.title('PSO Clustering')
plt.show()
```
运行结果如下图所示:
![image](https://user-images.githubusercontent.com/39338850/135165746-f2510f90-7ca0-4d6a-a628-38a3e6d0e5e7.png)
阅读全文