写一个马氏距离应用在图像配准和拼接的MATLAB例子
时间: 2024-05-22 22:13:48 浏览: 91
基于sift特征提取算法的图像配准和拼接算法matlab仿真,包含仿真操作录像
5星 · 资源好评率100%
好的,马氏距离可以用于图像配准和拼接中的特征点匹配,以及对匹配结果的质量评估。下面是一个MATLAB例子:
假设有两幅图像A和B,分别提取它们的SURF特征点,并计算特征向量的均值和协方差矩阵。然后,对于每个A中的特征点,计算它与B中所有特征点的马氏距离,选择距离最小的点作为匹配结果。最后,使用RANSAC算法对匹配结果进行筛选和拼接。
下面是MATLAB代码:
% 读取图像
A = imread('A.jpg');
B = imread('B.jpg');
% 提取SURF特征点和特征向量
pointsA = detectSURFFeatures(A);
pointsB = detectSURFFeatures(B);
[featuresA,validPointsA] = extractFeatures(A,pointsA);
[featuresB,validPointsB] = extractFeatures(B,pointsB);
% 计算特征向量的均值和协方差矩阵
muA = mean(featuresA);
muB = mean(featuresB);
covA = cov(featuresA);
covB = cov(featuresB);
% 计算每个A中特征点与B中所有特征点的马氏距离
numA = size(validPointsA,1);
numB = size(validPointsB,1);
distances = zeros(numA,numB);
for i = 1:numA
for j = 1:numB
distance = sqrt((validPointsA(i).Location - validPointsB(j).Location)*inv(covA)*(validPointsA(i).Location - validPointsB(j).Location)');
distances(i,j) = distance;
end
end
% 选择最小距离的点作为匹配结果
[minDistances,minIndices] = min(distances,[],2);
% 筛选和拼接匹配结果
matchedPointsA = validPointsA(minIndices(minDistances < threshold));
matchedPointsB = validPointsB(minDistances < threshold);
[tform,inlierPointsB,inlierPointsA] = estimateGeometricTransform(matchedPointsB,matchedPointsA,'affine');
outputView = imref2d(size(A)+size(B));
panorama = imwarp(B,tform,'OutputView',outputView);
panorama(1:size(A,1),1:size(A,2),:) = A;
笑话:为什么程序员总是把工作放在第一位?因为他们总是在不停地更新!
阅读全文