R语言怎样写一个多分类的Lasso回归?因变量Y数据是4分类,X数据中全部为自变量。
时间: 2024-05-15 22:15:48 浏览: 231
R语言-lasso回归实例代码
可以使用glmnet包中的multinomial选项来实现多分类的Lasso回归。
首先,加载需要用到的库:
```R
library(glmnet)
```
然后,读入数据并将因变量Y转换为factor类型:
```R
data <- read.csv("data.csv")
data$Y <- as.factor(data$Y)
```
接着,将数据分为训练集和测试集:
```R
train_index <- sample(1:nrow(data), round(0.7 * nrow(data)), replace = FALSE)
train_data <- data[train_index, ]
test_data <- data[-train_index, ]
```
定义自变量X和因变量Y:
```R
X_train <- as.matrix(train_data[, -1])
Y_train <- train_data[, 1]
X_test <- as.matrix(test_data[, -1])
Y_test <- test_data[, 1]
```
使用cv.glmnet函数进行交叉验证,并选择最佳的lambda值:
```R
cv_fit <- cv.glmnet(x = X_train, y = Y_train, alpha = 1, family = "multinomial")
best_lambda <- cv_fit$lambda.min
```
使用glmnet函数进行拟合:
```R
fit <- glmnet(x = X_train, y = Y_train, alpha = 1, family = "multinomial", lambda = best_lambda)
```
使用predict函数进行预测:
```R
pred <- predict(fit, newx = X_test, s = best_lambda, type = "class")
```
最后,计算预测准确率:
```R
accuracy <- sum(pred == Y_test) / length(Y_test)
```
完整代码:
```R
library(glmnet)
data <- read.csv("data.csv")
data$Y <- as.factor(data$Y)
train_index <- sample(1:nrow(data), round(0.7 * nrow(data)), replace = FALSE)
train_data <- data[train_index, ]
test_data <- data[-train_index, ]
X_train <- as.matrix(train_data[, -1])
Y_train <- train_data[, 1]
X_test <- as.matrix(test_data[, -1])
Y_test <- test_data[, 1]
cv_fit <- cv.glmnet(x = X_train, y = Y_train, alpha = 1, family = "multinomial")
best_lambda <- cv_fit$lambda.min
fit <- glmnet(x = X_train, y = Y_train, alpha = 1, family = "multinomial", lambda = best_lambda)
pred <- predict(fit, newx = X_test, s = best_lambda, type = "class")
accuracy <- sum(pred == Y_test) / length(Y_test)
```
阅读全文