n = 10000000 p = 10 x = np.random.normal(size=(n, p)) beta = np.arange(1, p+1).reshape(-1, 1) z = x @ beta condprob = norm.cdf(z) y = np.random.binomial(n=1, p=condprob, size=(n,1))linear_fit = LinearRegression().fit(x, y)print(linear_fit)为什么结果为LinearRegression()
时间: 2023-11-27 17:04:49 浏览: 86
这段代码中,首先使用了numpy库生成了一个大小为(n,p)的随机正态分布矩阵x,然后使用arange函数创建了一个(p,1)的列向量beta,这个向量的元素为1到p,reshape函数将其变形为(p,1)的矩阵。接着,将x和beta相乘得到z,其中@表示矩阵乘法。利用正态分布的累积分布函数norm.cdf(z)计算z中每个元素的概率值,然后使用这些概率值作为参数,使用二项分布函数np.random.binomial生成大小为(n,1)的响应变量y。最后,使用sklearn库中的LinearRegression()函数对x和y进行线性回归,得到线性回归对象linear_fit。因此,输出结果为LinearRegression()。
相关问题
#设置参数 p=20 n=5000 beta=np.arange(p) # 回归系数beta # 以数组形式返回给定区间内均匀间隔的值 #生成X X=np.random.normal(0,1,size=(n,p)) # 从二项分布中抽取样本,形式:(n,p) epsilon = np.random.normal(size=n) #生成Y Y=np.zeros(n) #初始化Y #返回来一个给定形状和类型的用0填充的数组 Y[epsilon + np.dot(X, beta).reshape(-1) > 0] = 1 data = np.concatenate((X, Y.reshape(-1, 1)), axis=1)
这段代码看起来是用来生成一个二分类数据集的,其中参数p表示特征的数量,n表示样本数量,beta表示回归系数,X表示特征矩阵,Y表示标签,epsilon表示噪声。具体来说,这段代码先生成了一个p维的随机正态分布的特征矩阵X,然后根据X和beta生成一个线性组合,再加上一些随机噪声epsilon,最后将结果大于0的样本标记为1,其余标记为0,生成二分类标签Y。最终将特征矩阵X和标签Y拼接在一起,作为生成的数据集。
import numpy as np from scipy.stats import norm, binom from statsmodels.api import families #glm n = 10000000 p = 10 x = np.random.normal(size=(n, p)) beta = np.arange(1, p+1).reshape(-1, 1) z = x @ beta condprob = norm.cdf(z) y = binom.rvs(1, condprob, size=n).reshape(-1, 1) prob_fit = glm(y, x, family=families.Binomial(link=families.links.probit)).fit() logit_fit = glm(y, x, family=families.Binomial(link=families.links.logit)).fit() linear_fit = glm(y, x, family=families.Gaussian(link=families.links.identity)).fit() coef_mat = np.column_stack((prob_fit.params, logit_fit.params, linear_fit.params)) print(coef_mat) prop_mat = np.column_stack((prob_fit.params / logit_fit.params, prob_fit.params / linear_fit.params, logit_fit.params / linear_fit.params)) print(prop_mat)
这段代码是用 Python 实现的,主要使用了 numpy、scipy 和 statsmodels 这几个库。代码中生成了一个大小为 (10000000, 10) 的随机矩阵 x,以及一个大小为 (10000000, 1) 的随机向量 y。然后分别使用 probit、logit 和 identity 这三种链接函数对 y 进行了广义线性模型的拟合,得到了三组系数,分别存储在 coef_mat 和 prop_mat 中。其中 coef_mat 是一个 10x3 的矩阵,每一列代表一个链接函数的系数向量;prop_mat 是一个 10x3 的矩阵,每一行代表一个自变量在三个链接函数下的系数比值。
阅读全文