在Practice_10_cifar100代码中添加SE注意力模块
时间: 2024-02-13 17:04:47 浏览: 120
Java_practice_answer.rar_java practi_java 习题_practice
好的,首先需要在代码中引入SE注意力模块所需的库和函数:
```python
import tensorflow as tf
def se_block(input_feature, ratio=8):
"""Squeeze-and-excitation block"""
channel_axis = 1 if tf.keras.backend.image_data_format() == "channels_first" else -1
channel = input_feature.shape[channel_axis]
se_feature = tf.keras.layers.GlobalAveragePooling2D()(input_feature)
se_feature = tf.keras.layers.Reshape((1, 1, channel))(se_feature)
se_feature = tf.keras.layers.Dense(channel // ratio, activation='relu', kernel_initializer='he_normal', use_bias=True)(se_feature)
se_feature = tf.keras.layers.Dense(channel, activation='sigmoid', kernel_initializer='he_normal', use_bias=True)(se_feature)
if tf.keras.backend.image_data_format() == 'channels_first':
se_feature = tf.keras.layers.Permute((3, 1, 2))(se_feature)
se_tensor = tf.keras.layers.multiply([input_feature, se_feature])
return se_tensor
```
然后在代码中的残差块中添加SE注意力模块:
```python
def residual_block(inputs, filters, strides=(1, 1), use_se=True):
shortcut = inputs
# first block
x = tf.keras.layers.Conv2D(filters=filters, kernel_size=(3, 3), strides=strides, padding='same',
kernel_initializer='he_normal')(inputs)
x = tf.keras.layers.BatchNormalization()(x)
x = tf.keras.layers.Activation('relu')(x)
# second block
x = tf.keras.layers.Conv2D(filters=filters, kernel_size=(3, 3), strides=(1, 1), padding='same',
kernel_initializer='he_normal')(x)
x = tf.keras.layers.BatchNormalization()(x)
# SE block
if use_se:
x = se_block(x)
# shortcut connection
if strides != (1, 1) or inputs.shape[-1] != filters:
shortcut = tf.keras.layers.Conv2D(filters=filters, kernel_size=(1, 1), strides=strides, padding='same',
kernel_initializer='he_normal')(inputs)
shortcut = tf.keras.layers.BatchNormalization()(shortcut)
x = tf.keras.layers.Add()([x, shortcut])
x = tf.keras.layers.Activation('relu')(x)
return x
```
这样就在代码中添加了SE注意力模块。注意,这里的实现方式是在残差块中嵌入SE注意力模块,而不是在整个模型中添加。
阅读全文