如何调用 class MultiHeadAttention(tf.keras.layers.Layer):
时间: 2023-12-03 19:47:21 浏览: 153
你可以按照以下步骤调用 class MultiHeadAttention(tf.keras.layers.Layer):
1. 首先,导入 tensorflow 库:
```python
import tensorflow as tf
```
2. 创建一个 MultiHeadAttention 类的实例,并传入所需的参数:
```python
mha = MultiHeadAttention(heads=8, d_model=512, dropout=0.2)
```
这里的 heads 表示头的数量,d_model 表示模型的维度,dropout 表示 dropout 的概率。
3. 将输入数据传递给 MultiHeadAttention 实例:
```python
output = mha(inputs)
```
这里的 inputs 是一个形状为 (batch_size, seq_len, d_model) 的张量,表示输入数据的形状。
完整的调用代码示例:
```python
import tensorflow as tf
class MultiHeadAttention(tf.keras.layers.Layer):
def __init__(self, heads, d_model, dropout):
super(MultiHeadAttention, self).__init__()
self.heads = heads
self.d_model = d_model
self.dropout = dropout
self.depth = d_model // heads
self.Wq = tf.keras.layers.Dense(d_model)
self.Wk = tf.keras.layers.Dense(d_model)
self.Wv = tf.keras.layers.Dense(d_model)
self.dense = tf.keras.layers.Dense(d_model)
def split_heads(self, x, batch_size):
x = tf.reshape(x, (batch_size, -1, self.heads, self.depth))
return tf.transpose(x, perm=[0, 2, 1, 3])
def call(self, inputs):
q = self.Wq(inputs)
k = self.Wk(inputs)
v = self.Wv(inputs)
batch_size = tf.shape(q)[0]
q = self.split_heads(q, batch_size)
k = self.split_heads(k, batch_size)
v = self.split_heads(v, batch_size)
scaled_attention, attention_weights = scaled_dot_product_attention(q, k, v)
scaled_attention = tf.transpose(scaled_attention, perm=[0, 2, 1, 3])
concat_attention = tf.reshape(scaled_attention, (batch_size, -1, self.d_model))
output = self.dense(concat_attention)
return output
mha = MultiHeadAttention(heads=8, d_model=512, dropout=0.2)
inputs = tf.random.uniform((64, 10, 512))
output = mha(inputs)
print(output.shape)
```
这里的输入数据 inputs 的形状是 (64, 10, 512),表示有 64 个序列,每个序列的长度为 10,每个词的向量维度为 512。输出的形状也是 (64, 10, 512)。
阅读全文