MATLAB编写LOF算法
时间: 2023-11-10 08:09:13 浏览: 85
LOF算法是一种基于密度的异常点检测算法。下面是MATLAB实现:
1. 导入数据
```
data = load('data.txt');
```
2. 计算每个点的k距离
```
k = 5; % k值
m = size(data, 1); % 数据集大小
distances = zeros(m, m);
k_distances = zeros(m, 1);
for i = 1:m
for j = i+1:m
distances(i, j) = norm(data(i,:) - data(j,:));
distances(j, i) = distances(i, j);
end
k_distances(i) = max(sort(distances(i,:)), k);
end
```
3. 计算每个点的可达距离
```
reachability_distances = zeros(m, m);
for i = 1:m
for j = i+1:m
reachability_distances(i, j) = max([distances(i, j), k_distances(j)]);
reachability_distances(j, i) = reachability_distances(i, j);
end
end
```
4. 计算每个点的局部可达密度
```
local_reachability_density = zeros(m, 1);
for i = 1:m
indices = find(reachability_distances(i,:) <= k_distances(i));
local_reachability_density(i) = length(indices) / sum(reachability_distances(i, indices));
end
```
5. 计算每个点的局部异常因子
```
LOF = zeros(m, 1);
for i = 1:m
indices = find(reachability_distances(i,:) <= k_distances(i));
LOF(i) = sum(local_reachability_density(indices)) / (local_reachability_density(i) * length(indices));
end
```
6. 可视化结果
```
scatter(data(:,1), data(:,2), 20, LOF, 'filled');
colorbar;
```
完整代码如下:
```
data = load('data.txt');
k = 5; % k值
m = size(data, 1); % 数据集大小
% 计算每个点的k距离
distances = zeros(m, m);
k_distances = zeros(m, 1);
for i = 1:m
for j = i+1:m
distances(i, j) = norm(data(i,:) - data(j,:));
distances(j, i) = distances(i, j);
end
k_distances(i) = max(sort(distances(i,:)), k);
end
% 计算每个点的可达距离
reachability_distances = zeros(m, m);
for i = 1:m
for j = i+1:m
reachability_distances(i, j) = max([distances(i, j), k_distances(j)]);
reachability_distances(j, i) = reachability_distances(i, j);
end
end
% 计算每个点的局部可达密度
local_reachability_density = zeros(m, 1);
for i = 1:m
indices = find(reachability_distances(i,:) <= k_distances(i));
local_reachability_density(i) = length(indices) / sum(reachability_distances(i, indices));
end
% 计算每个点的局部异常因子
LOF = zeros(m, 1);
for i = 1:m
indices = find(reachability_distances(i,:) <= k_distances(i));
LOF(i) = sum(local_reachability_density(indices)) / (local_reachability_density(i) * length(indices));
end
% 可视化结果
scatter(data(:,1), data(:,2), 20, LOF, 'filled');
colorbar;
```
阅读全文