基于matlab的语音识别实现倒谱分析代码
时间: 2023-07-15 09:15:20 浏览: 115
语音信号倒谱的matlab程序
5星 · 资源好评率100%
以下是基于matlab的语音识别实现倒谱分析的代码:
```matlab
% 读取音频文件
[x, fs] = audioread('audio.wav');
% 分帧
frame_length = 0.025; % 每帧长度为25ms
frame_shift = 0.01; % 帧移为10ms
frame_size = frame_length * fs;
frame_shift_size = frame_shift * fs;
frame_num = floor((length(x) - frame_size) / frame_shift_size) + 1;
frames = zeros(frame_size, frame_num);
for i = 1:frame_num
start_index = (i - 1) * frame_shift_size + 1;
end_index = start_index + frame_size - 1;
frames(:, i) = x(start_index:end_index);
end
% 加窗
hamming_window = hamming(frame_size);
frames = frames .* repmat(hamming_window, 1, frame_num);
% 计算功率谱密度
NFFT = 2 ^ nextpow2(frame_size);
psd = abs(fft(frames, NFFT)) .^ 2 / frame_size;
% 计算梅尔滤波器组系数
mel_filter_num = 26;
mel_filter_bank = mel_filter_bank(fs, NFFT, mel_filter_num);
% 应用梅尔滤波器组
mel_filter_output = log(mel_filter_bank * psd(1:NFFT / 2 + 1, :));
% 应用离散余弦变换
mfcc = dct(mel_filter_output);
% 计算倒谱系数
cepstral_num = 12;
cepstral_coeffs = mfcc(1:cepstral_num, :);
% 可视化倒谱系数
figure;
imagesc(cepstral_coeffs);
colorbar;
xlabel('Frame Index');
ylabel('Cepstral Coefficients');
title('MFCC Coefficients');
```
其中,`mel_filter_bank` 函数用于计算梅尔滤波器组系数,代码如下:
```matlab
function mel_filter_bank = mel_filter_bank(fs, NFFT, mel_filter_num)
% fs:采样率
% NFFT:FFT点数
% mel_filter_num:梅尔滤波器组数量
% 计算梅尔刻度频率
mel_low_freq = 0;
mel_high_freq = hz2mel(fs / 2);
mel_freqs = linspace(mel_low_freq, mel_high_freq, mel_filter_num + 2);
% 将梅尔刻度频率转换为赫兹频率
hz_freqs = mel2hz(mel_freqs);
% 将赫兹频率转换为FFT点数下标
fft_indices = floor((NFFT + 1) * hz_freqs / fs);
% 初始化梅尔滤波器组
mel_filter_bank = zeros(mel_filter_num, NFFT / 2 + 1);
% 构建梅尔滤波器组
for i = 1:mel_filter_num
left = fft_indices(i);
center = fft_indices(i + 1);
right = fft_indices(i + 2);
for j = left:center
mel_filter_bank(i, j) = (j - left) / (center - left);
end
for j = center:right
mel_filter_bank(i, j) = (right - j) / (right - center);
end
end
```
其中,`hz2mel` 和 `mel2hz` 函数用于频率单位转换,代码如下:
```matlab
function mel = hz2mel(hz)
mel = 1127 * log(1 + hz / 700);
function hz = mel2hz(mel)
hz = 700 * (exp(mel / 1127) - 1);
```
阅读全文