用python写一段基于tensflow2.0 的ddpg案例
时间: 2023-07-19 22:58:03 浏览: 119
当然可以!以下是一个基于TensorFlow 2.0的DDPG(Deep Deterministic Policy Gradient)算法的简单示例:
```python
import tensorflow as tf
from tensorflow.keras.layers import Dense
from tensorflow.keras.optimizers import Adam
class Actor(tf.keras.Model):
def __init__(self, state_dim, action_dim, max_action):
super(Actor, self).__init__()
self.hidden1 = Dense(256, activation='relu')
self.hidden2 = Dense(256, activation='relu')
self.output_layer = Dense(action_dim, activation='tanh')
self.max_action = max_action
def call(self, inputs):
x = self.hidden1(inputs)
x = self.hidden2(x)
x = self.output_layer(x)
return self.max_action * x
class Critic(tf.keras.Model):
def __init__(self, state_dim, action_dim):
super(Critic, self).__init__()
self.hidden1 = Dense(256, activation='relu')
self.hidden2 = Dense(256, activation='relu')
self.output_layer = Dense(1)
def call(self, state, action):
x = tf.concat([state, action], axis=1)
x = self.hidden1(x)
x = self.hidden2(x)
return self.output_layer(x)
class DDPG:
def __init__(self, state_dim, action_dim, max_action):
self.actor = Actor(state_dim, action_dim, max_action)
self.critic = Critic(state_dim, action_dim)
self.target_actor = Actor(state_dim, action_dim, max_action)
self.target_critic = Critic(state_dim, action_dim)
self.actor_optimizer = Adam(learning_rate=0.001)
self.critic_optimizer = Adam(learning_rate=0.001)
self.tau = 0.005
def get_action(self, state):
state = tf.expand_dims(tf.convert_to_tensor(state), 0)
action = self.actor(state)[0]
return action.numpy()
def train(self, replay_buffer, batch_size=64, gamma=0.99):
states, actions, next_states, rewards, dones = replay_buffer.sample_batch(batch_size)
with tf.GradientTape() as tape:
target_actions = self.target_actor(next_states)
target_q_values = self.target_critic(next_states, target_actions)
target_q_values = rewards + gamma * target_q_values * (1 - dones)
q_values = self.critic(states, actions)
critic_loss = tf.reduce_mean(tf.square(q_values - target_q_values))
critic_grad = tape.gradient(critic_loss, self.critic.trainable_variables)
self.critic_optimizer.apply_gradients(zip(critic_grad, self.critic.trainable_variables))
with tf.GradientTape() as tape:
new_actions = self.actor(states)
actor_loss = -tf.reduce_mean(self.critic(states, new_actions))
actor_grad = tape.gradient(actor_loss, self.actor.trainable_variables)
self.actor_optimizer.apply_gradients(zip(actor_grad, self.actor.trainable_variables))
self.update_target_networks()
def update_target_networks(self):
for target, source in zip(self.target_actor.trainable_variables, self.actor.trainable_variables):
target.assign(self.tau * source + (1 - self.tau) * target)
for target, source in zip(self.target_critic.trainable_variables, self.critic.trainable_variables):
target.assign(self.tau * source + (1 - self.tau) * target)
# 示例用法
state_dim = 4
action_dim = 2
max_action = 1
ddpg = DDPG(state_dim, action_dim, max_action)
# 训练循环
for episode in range(num_episodes):
# 执行动作并观察环境
action = ddpg.get_action(state)
next_state, reward, done, _ = env.step(action)
# 将经验存储到回放缓冲区
replay_buffer.add(state, action, next_state, reward, done)
# 更新DDPG算法
ddpg.train(replay_buffer)
# 更新当前状态
state = next_state
```
这只是一个简单的DDPG算法示例,实际应用中可能需要进行更多的调优和改进。希望对你有所帮助!
阅读全文