短进程调度算法的平均时间怎么计算

时间: 2024-05-25 16:10:18 浏览: 28
短进程调度算法的平均时间可以通过以下步骤计算: 1. 计算每个进程的等待时间,等待时间 = 完成时间 - 到达时间 - 运行时间。 2. 计算所有进程的等待时间之和,即 Σ等待时间。 3. 计算平均等待时间,平均等待时间 = Σ等待时间 / 进程数。 4. 计算每个进程的周转时间,周转时间 = 完成时间 - 到达时间。 5. 计算所有进程的周转时间之和,即 Σ周转时间。 6. 计算平均周转时间,平均周转时间 = Σ周转时间 / 进程数。 其中,完成时间指进程完成执行的时刻,到达时间指进程进入系统的时刻,运行时间指进程执行完成所需的时间,进程数指参与调度的进程总数。
相关问题

用python编程实现进程调度算法中的:短进程优先调度算法

下面是一个简单的Python实现短进程优先调度算法的示例代码: ```python # 定义进程类 class Process: def __init__(self, pid, arrival_time, burst_time): self.pid = pid # 进程ID self.arrival_time = arrival_time # 到达时间 self.burst_time = burst_time # 执行时间 def __str__(self): return f'进程{self.pid}:到达时间={self.arrival_time},执行时间={self.burst_time}' # 短进程优先调度算法 def sjf(processes): current_time = 0 # 当前时间 waiting_time = 0 # 总等待时间 n = len(processes) queue = [] # 任务队列 while True: for i in range(n): # 将到达时间小于等于当前时间的进程加入队列 if processes[i].arrival_time <= current_time and processes[i] not in queue: queue.append(processes[i]) if len(queue) == 0: break # 按照执行时间排序,选择执行时间最短的进程 queue.sort(key=lambda x: x.burst_time) process = queue.pop(0) waiting_time += current_time - process.arrival_time current_time += process.burst_time return waiting_time / n # 测试 if __name__ == '__main__': processes = [ Process(1, 0, 5), Process(2, 2, 3), Process(3, 4, 1), Process(4, 5, 4), Process(5, 6, 2), ] avg_waiting_time = sjf(processes) print(f'平均等待时间:{avg_waiting_time:.2f}') ``` 以上代码实现了一个简单的短进程优先调度算法,并通过一组测试数据进行了测试。

c语言实现进程调度算法中的:先来先服务调度算法、短 进程优先调度算法、时间片轮转调度算法和优先级调度算法(抢占式)、高响应 比优先调度算法。定义多个进程并建立就绪队列,分别使用上述算法模拟单处理 机环境下进程的调度过程,最后分析实验结果。

好的,让我们逐个来看每种进程调度算法的实现。 1. 先来先服务调度算法(FCFS) 先来先服务调度算法是最简单的进程调度算法之一,它按照进程到达先后的顺序进行调度。实现时,我们可以定义一个就绪队列,并且在每个进程到达时,将其加入到就绪队列的末尾。然后按照队列中进程的顺序进行调度。这个算法的缺点是可能出现长进程等待短进程的情况,导致平均等待时间较长。 2. 短进程优先调度算法(SJF) 短进程优先调度算法是根据进程的执行时间进行调度的算法。实现时,我们需要记录每个进程的执行时间,并且在每个进程到达时,将其加入到就绪队列中。然后按照进程执行时间从小到大进行排序,先执行执行时间短的进程。这个算法可以减少平均等待时间,但是可能会出现长进程等待短进程的情况。 3. 时间片轮转调度算法(RR) 时间片轮转调度算法是按照时间片对进程进行调度的算法。实现时,我们可以定义一个就绪队列,并且在每个进程到达时,将其加入到就绪队列的末尾。然后按照队列中进程的顺序进行调度,每个进程执行一个时间片,然后将它放回队列的末尾。这个算法可以保证每个进程都有机会执行,并且可以避免长进程等待短进程的情况。 4. 优先级调度算法(抢占式) 优先级调度算法是根据进程优先级进行调度的算法。实现时,我们需要为每个进程定义一个优先级,并且在每个进程到达时,将其加入到就绪队列中。然后按照优先级从高到低进行排序,先执行优先级高的进程。如果有多个进程的优先级相同,则按照先来先服务的原则进行调度。这个算法可以保证优先级高的进程先执行,并且可以避免长进程等待短进程的情况。 5. 高响应比优先调度算法(HRRN) 高响应比优先调度算法是根据进程响应比进行调度的算法。响应比定义为(等待时间+执行时间)/执行时间,表示一个进程等待的时间与它需要执行的时间之比。实现时,我们需要记录每个进程的等待时间和执行时间,并且在每个进程到达时,将其加入到就绪队列中。然后按照响应比从高到低进行排序,先执行响应比高的进程。这个算法可以兼顾短进程和长进程,并且可以避免长进程等待短进程的情况。 以上是各种进程调度算法的实现方法,我们可以通过编写程序来模拟单处理机环境下进程的调度过程,最后通过比较实验结果,得出每种算法的优缺点。
阅读全文

相关推荐

最新推荐

recommend-type

操作系统实验报告 C++实现进程调度算法,短进程优先SJF与先来先服务FCFS算法

操作系统实验报告 C++实现进程调度算法,短进程优先SJF与先来先服务FCFS算法 本实验报告的主要目的是通过C++语言实现短进程优先SJF和先来先服务FCFS两种进程调度算法,并比较它们的性能。 第一部分:实验目的 本...
recommend-type

“短进程优先”、“时间片轮转”、“高响应比优先”调度算法

本实验涉及三种常见的调度算法:短进程优先(SPF)、时间片轮转(RR)和高响应比优先(HRN),目的是通过模拟调度过程来理解这些算法的工作原理及其对系统性能的影响。 首先,让我们逐一探讨这三种算法: 1. **短...
recommend-type

短作业优先算法实现进程调度

短作业优先(Shortest Job First, SJF)调度算法是一种非抢占式调度策略,它旨在优先执行预计运行时间最短的进程。这种算法在多任务环境中特别有用,因为它可以减少平均周转时间和平均带权周转时间,从而提高系统...
recommend-type

进程调度算法实现[进程调度]

在本文中,我们将深入探讨几种常见的进程调度算法,包括FIFO(先进先出)、优先数调度算法(包括静态优先级)以及时间片轮转调度算法。 **FIFO(先进先出)调度算法**是最简单的调度策略,也称为短作业优先(SJF,...
recommend-type

进程调度算法进程调度算法进程调度算法进程调度算法

以下是几种常见的进程调度算法的详细说明: 1. **先进先出法(FIFO)**: - FIFO算法遵循进程到达的顺序进行调度,是最简单的调度策略。 - 优点:实现简单,公平性较好,对长进程有利。 - 缺点:未考虑进程的...
recommend-type

单片机串口通信仿真与代码实现详解

资源摘要信息:"本文主要介绍了如何利用单片机实现与PC机之间的串口通信仿真。首先,将解释串口通信的基本概念,然后深入讨论单片机实现串口通信的硬件连接和软件编程方法。本节还将提供一个详细的代码示例,说明如何在单片机端编写程序来实现串口数据的发送和接收。标签为单片机,意味着本文将重点围绕单片机技术展开,内容涵盖从单片机的基础知识到应用实践的各个方面。" 单片机与PC机串口通信是嵌入式系统设计中的一项基本技能,它涉及到硬件设计、软件编程以及通信协议等多个方面。了解和掌握这些知识对于进行嵌入式系统开发至关重要。 首先,要了解串口通信的基本概念。串口通信(Serial Communication)是一种广泛应用于计算机和电子设备间的数据传输方式。与并行通信相比,串行通信只使用一对线即可完成数据的发送和接收,由于其硬件连接简单,成本低,因此在远程通信和嵌入式系统中得到了广泛应用。串口通信通常遵循RS-232、RS-485等标准协议,其主要参数包括波特率、数据位、停止位和校验位等。 在硬件连接方面,单片机与PC机进行串口通信需要一个电平转换器(比如MAX232)将单片机的TTL电平转换为PC机RS-232电平,或者使用USB转串口模块实现连接。硬件连接时,需要正确连接TX(发送线)、RX(接收线)、GND(地线)等,如果设计不当可能会导致通信失败。 软件编程方面,单片机的串口通信程序需要初始化串口配置参数,设置中断或轮询方式来检测和处理串口数据。初始化通常包括设置波特率、数据位、停止位和校验位等,确保单片机与PC机的通信参数一致。在中断方式下,当接收到数据或发送完成时,单片机会产生中断,通过中断服务程序处理这些事件。轮询方式则是通过不断检查状态寄存器来判断是否接收到了数据或者可以发送数据。 在代码实现方面,以常见的51系列单片机为例,编程语言通常使用C语言。一个典型的串口通信代码示例包含以下几个主要部分: 1. 包含单片机串口编程相关的头文件。 2. 定义相关宏和变量。 3. 初始化串口配置函数。 4. 中断服务程序(如果是采用中断方式接收数据)。 5. 主函数(main),在其中调用初始化函数,并通过循环来轮询接收数据或者处理其他任务。 例如,一个简单的初始化串口的函数可能包含以下代码: ```c void SerialInit() { SCON = 0x50; // 设置串口为模式1 TMOD |= 0x20; // 使用定时器1作为波特率发生器 TH1 = 0xFD; // 设置波特率9600 TL1 = 0xFD; TR1 = 1; // 启动定时器1 ES = 1; // 开启串口中断 EA = 1; // 开启全局中断 } ``` 在中断服务程序中,可以编写接收数据的处理代码,例如: ```c void Serial_ISR() interrupt 4 { if(RI) { // 检查是否为接收中断 RI = 0; // 清除接收中断标志 char receivedData = SBUF; // 读取接收到的数据 // 进一步处理接收到的数据 } } ``` 以上代码仅为示例,实际应用中需要根据具体的硬件环境和需求进行调整。 综上所述,单片机与PC机串口通信仿真涉及到硬件连接、软件编程等多个方面的知识。掌握这些知识对于进行嵌入式系统设计和开发具有重要意义。通过本文的介绍,读者应能对单片机与PC机串口通信有一个基本的认识,并能够在实际项目中应用这些知识。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【JavaFX性能分析】:如何识别并解决自定义组件的瓶颈

![Java JavaFX 组件自定义](https://files.codingninjas.in/article_images/javafx-line-chart-1-1658465351.jpg) # 1. JavaFX自定义组件性能挑战概述 JavaFX是Sun公司推出的Java GUI工具包,用以构建和部署富客户端应用。与Swing相比,JavaFX更注重于提供现代的,丰富的用户界面体验,以及时尚的图形和动画效果。尽管如此,开发者在使用JavaFX进行自定义组件开发时,往往会面临性能上的挑战。这种性能挑战主要来自于用户对界面流畅度、交互响应时间及资源占用等性能指标的高要求。 本章
recommend-type

数据结构,用链表的方法建立二叉树, 实现二叉树的先序遍历算法。

数据结构中,利用链表构建二叉树通常涉及节点的设计和递归操作。首先,我们创建一个链表节点,它包含两个指针:一个指向左子节点(`left`),另一个指向右子节点(`right`),以及存储数据值的域(如 `val`)。对于先序遍历(根节点 -> 左子树 -> 右子树),我们可以按照以下步骤进行: 1. **创建链表节点**: ```python class TreeNode: def __init__(self, val=0, left=None, right=None): self.val = val self.left = left s
recommend-type

LVGL GUI-Guider工具:设计并仿真LVGL界面

资源摘要信息:"LVGL利器GUI-GUIder资源包" GUI-GUIder是一款专为LVGL(Light and Versatile Graphics Library)开发的图形用户界面设计工具。LVGL是一个开源的嵌入式图形库,广泛应用于微控制器单元(MCU)项目中,用于构建用户友好的图形界面。随着物联网和智能硬件的兴起,对嵌入式设备的交互界面要求越来越高,LVGL库因其轻量级、可定制性强、高效的性能而成为嵌入式系统开发者的一个优选图形界面解决方案。 GUI-GUIder资源包中包含的软件版本为1.4.0。这个版本的工具支持Windows 10和Ubuntu 20.04操作系统,意味着开发者可以在不同的开发环境中使用这一工具,从而提高开发效率和跨平台兼容性。软件还提供中文和英文两种语言界面,方便不同语言背景的用户使用。 GUI-GUIder的主要特征包括: 1. 拖放的所见即所得(WYSIWYG)用户界面设计:用户可以通过直观的拖放操作来设计GUI页面,无需编写复杂的代码。这种方式大大简化了GUI设计过程,使得非专业的图形设计人员也能快速上手,高效完成界面设计任务。 2. 多种字体支持及第三方字体导入:GUI-GUIder支持多种字体,同时也允许用户导入第三方字体,为设计界面提供了丰富的文本显示选项,增加了用户界面的多样性和美观性。 3. 可定制的中文字符范围:针对中文字符的显示,GUI-GUIder允许用户自定义字符范围,这为需要显示大量中文内容的界面设计提供了灵活性和便利性。 4. 小部件对齐方式:设计工具提供了左、中、右三种对齐方式,方便用户根据界面布局需求,对界面元素进行精确的定位和布局。 5. 自动产生LVGL C语言源代码:设计完成后,GUI-GUIder能够自动将设计的GUI界面转换为LVGL的C语言源代码。开发者可以将这些代码集成到自己的MCU项目中,缩短开发周期,提高项目的完成速度。 6. 支持默认样式和自定义样式:GUI-GUIder内置了一套默认样式,用户可以直接使用,快速搭建界面。同时,用户也可以根据项目需求自定义样式,满足个性化的设计需求。 7. 演示应用程序集成:GUI-GUIder集成了演示应用程序,开发者可以通过演示程序了解LVGL的效果和操作,为设计自己的应用程序提供参考。 8. 实时日志显示:在设计和运行过程中,GUI-GUIder能够实时显示日志信息,帮助开发者快速定位问题和调试。 9. 集成上位机仿真器:GUI-GUIder内置了仿真器,允许用户在PC上仿真运行设计好的GUI页面,即时查看设计效果,确保界面的正确性和用户体验。 在实际使用中,用户首先需要从资源包中安装GUI-Guider-Setup-1.4.0-GA.exe文件,完成安装后,即可启动GUI-GUIder进行界面设计。设计过程中,用户可以使用内置的拖放工具和各种配置选项,创建出满足需求的用户界面。完成后,工具会自动生成C代码,用户可以将这些代码嵌入到自己的MCU项目中,实现最终的界面效果。 GUI-GUIder资源包不仅提升了LVGL的设计效率,也为嵌入式系统的开发者提供了强大的工具支持,极大地简化了嵌入式图形界面开发的流程。