merged_array = np.column_stack((array1, array2))例子

时间: 2024-03-05 12:54:45 浏览: 19
好的,假设`array1`为`[1, 2, 3]`,`array2`为`[4, 5, 6]`,那么使用`np.column_stack()`函数将它们合并后的结果为: ```python merged_array = np.column_stack((array1, array2)) print(merged_array) ``` 输出结果为: ``` array([[1, 4], [2, 5], [3, 6]]) ``` 其中,第一列为`array1`的元素,第二列为`array2`的元素,它们按列合并成了一个2列3行的数组`merged_array`。
相关问题

以下Python代码出现错误KeyError: 'x1_diff'的原因:# 创建两个Dataframe df1 = pd.DataFrame({'m1': [1, 2, 3], 'm2': ['a', 'b', 'c'], 'x1': [10, 20, 30], 'x2': [100, 200, 300]}) df2 = pd.DataFrame({'m2': ['c', 'b', 'a'], 'm1': [3, 2, 1], 'x2': [350, 250, 150], 'x1': [35, 25, 15]}) # 按照相同维度字段m1、m2将两个Dataframe进行合并 merged_df = pd.merge(df1, df2, on=['m1', 'm2']) # 计算两个Dataframe的差值 merged_df['x1_diff'] = merged_df['x1_y'] - merged_df['x1_x'] merged_df['x2_diff'] = merged_df['x2_y'] - merged_df['x2_x'] # 计算x1和x2字段的值 merged_df['x1_value'] = merged_df[['x1_x', 'x1_y']].apply(lambda x: x['x1_diff'] / x['x1_x'], axis=1) merged_df['x2_value'] = merged_df[['x2_x', 'x2_y']].apply(lambda x: x['x2_diff'] / x['x2_x'], axis=1) # 筛选出x1和x2字段计算出来的大于0的所有值 positive_x1 = merged_df.loc[merged_df['x1_value'] > 0, 'x1_value'].values positive_x2 = merged_df.loc[merged_df['x2_value'] > 0, 'x2_value'].values # 计算中位数和第二四分位数 x1_median = np.median(positive_x1) x1_q2 = np.percentile(positive_x1, 75) x1_q4 = np.percentile(positive_x1, 25) x2_median = np.median(positive_x2) x2_q2 = np.percentile(positive_x2, 75) x2_q4 = np.percentile(positive_x2, 25) print('x1 中位数:', x1_median) print('x1 第二四分位数:', x1_q2, x1_q4) print('x2 中位数:', x2_median) print('x2 第二四分位数:', x2_q2, x2_q4)

这个错误是因为在计算`merged_df['x1_diff']`时,使用了不正确的列名。应该使用`merged_df['x1_y'] - merged_df['x1_x']`来计算,因为这是合并后的两个Dataframe中`x1`列的差值。正确的代码如下: ``` # 创建两个Dataframe df1 = pd.DataFrame({'m1': [1, 2, 3], 'm2': ['a', 'b', 'c'], 'x1': [10, 20, 30], 'x2': [100, 200, 300]}) df2 = pd.DataFrame({'m2': ['c', 'b', 'a'], 'm1': [3, 2, 1], 'x2': [350, 250, 150], 'x1': [35, 25, 15]}) # 按照相同维度字段m1、m2将两个Dataframe进行合并 merged_df = pd.merge(df1, df2, on=['m1', 'm2']) # 计算两个Dataframe的差值 merged_df['x1_diff'] = merged_df['x1_y'] - merged_df['x1_x'] merged_df['x2_diff'] = merged_df['x2_y'] - merged_df['x2_x'] # 计算x1和x2字段的值 merged_df['x1_value'] = merged_df[['x1_x', 'x1_y']].apply(lambda x: x['x1_diff'] / x['x1_x'], axis=1) merged_df['x2_value'] = merged_df[['x2_x', 'x2_y']].apply(lambda x: x['x2_diff'] / x['x2_x'], axis=1) # 筛选出x1和x2字段计算出来的大于0的所有值 positive_x1 = merged_df.loc[merged_df['x1_value'] > 0, 'x1_value'].values positive_x2 = merged_df.loc[merged_df['x2_value'] > 0, 'x2_value'].values # 计算中位数和第二四分位数 x1_median = np.median(positive_x1) x1_q2 = np.percentile(positive_x1, 75) x1_q4 = np.percentile(positive_x1, 25) x2_median = np.median(positive_x2) x2_q2 = np.percentile(positive_x2, 75) x2_q4 = np.percentile(positive_x2, 25) print('x1 中位数:', x1_median) print('x1 第二四分位数:', x1_q2, x1_q4) print('x2 中位数:', x2_median) print('x2 第二四分位数:', x2_q2, x2_q4) ```

请模仿Python,识别以下代码的问题,并给出正确代码:# 创建两个Dataframe df1 = pd.DataFrame({'m1': [1, 2, 3], 'm2': ['a', 'b', 'c'], 'x1': [10, 20, 30], 'x2': [100, 200, 300]}) df2 = pd.DataFrame({'m2': ['c', 'b', 'a'], 'm1': [3, 2, 1], 'x2': [350, 250, 150], 'x1': [35, 25, 15]}) # 按照相同维度字段m1、m2将两个Dataframe进行合并 merged_df = pd.merge(df1, df2, on=['m1', 'm2']) # 计算两个Dataframe的差值 merged_df['x1_diff'] = merged_df['x1_y'] - merged_df['x1_x'] merged_df['x2_diff'] = merged_df['x2_y'] - merged_df['x2_x'] # 计算x1和x2字段的值 merged_df['x1_value'] = merged_df[['x1_x', 'x1_y']].apply(lambda x: x['x1_diff'] / x['x1_x'], axis=1) merged_df['x2_value'] = merged_df[['x2_x', 'x2_y']].apply(lambda x: x['x2_diff'] / x['x2_x'], axis=1) # 筛选出x1和x2字段计算出来的大于0的所有值 positive_x1 = merged_df.loc[merged_df['x1_value'] > 0, 'x1_value'].values positive_x2 = merged_df.loc[merged_df['x2_value'] > 0, 'x2_value'].values # 计算中位数和第二四分位数 x1_median = np.median(positive_x1) x1_q2 = np.percentile(positive_x1, 75) x1_q4 = np.percentile(positive_x1, 25) x2_median = np.median(positive_x2) x2_q2 = np.percentile(positive_x2, 75) x2_q4 = np.percentile(positive_x2, 25) print('x1 中位数:', x1_median) print('x1 第二四分位数:', x1_q2, x1_q4) print('x2 中位数:', x2_median) print('x2 第二四分位数:', x2_q2, x2_q4)

代码的问题在于,数据框 df1 和 df2 中的 m1 和 m2 字段在创建时的顺序不同,导致在合并时可能会出现错误。正确的代码如下: ```python import pandas as pd import numpy as np # 创建两个Dataframe df1 = pd.DataFrame({'m1': [1, 2, 3], 'm2': ['a', 'b', 'c'], 'x1': [10, 20, 30], 'x2': [100, 200, 300]}) df2 = pd.DataFrame({'m1': [3, 2, 1], 'm2': ['c', 'b', 'a'], 'x1': [35, 25, 15], 'x2': [350, 250, 150]}) # 按照相同维度字段m1、m2将两个Dataframe进行合并 merged_df = pd.merge(df1, df2, on=['m1', 'm2']) # 计算两个Dataframe的差值 merged_df['x1_diff'] = merged_df['x1_y'] - merged_df['x1_x'] merged_df['x2_diff'] = merged_df['x2_y'] - merged_df['x2_x'] # 计算x1和x2字段的值 merged_df['x1_value'] = merged_df[['x1_x', 'x1_y']].apply(lambda x: x['x1_diff'] / x['x1_x'], axis=1) merged_df['x2_value'] = merged_df[['x2_x', 'x2_y']].apply(lambda x: x['x2_diff'] / x['x2_x'], axis=1) # 筛选出x1和x2字段计算出来的大于0的所有值 positive_x1 = merged_df.loc[merged_df['x1_value'] > 0, 'x1_value'].values positive_x2 = merged_df.loc[merged_df['x2_value'] > 0, 'x2_value'].values # 计算中位数和第二四分位数 x1_median = np.median(positive_x1) x1_q2 = np.percentile(positive_x1, 75) x1_q4 = np.percentile(positive_x1, 25) x2_median = np.median(positive_x2) x2_q2 = np.percentile(positive_x2, 75) x2_q4 = np.percentile(positive_x2, 25) print('x1 中位数:', x1_median) print('x1 第二四分位数:', x1_q2, x1_q4) print('x2 中位数:', x2_median) print('x2 第二四分位数:', x2_q2, x2_q4) ```

相关推荐

import pandas as pd import numpy as np # 计算用户对歌曲的播放比例 triplet_dataset_sub_song_merged_sum_df = triplet_dataset_sub_song_mergedpd[['user', 'listen_count']].groupby('user').sum().reset_index() triplet_dataset_sub_song_merged_sum_df.rename(columns={'listen_count': 'total_listen_count'}, inplace=True) triplet_dataset_sub_song_merged = pd.merge(triplet_dataset_sub_song_mergedpd, triplet_dataset_sub_song_merged_sum_df) triplet_dataset_sub_song_mergedpd['fractional_play_count'] = triplet_dataset_sub_song_mergedpd['listen_count'] / triplet_dataset_sub_song_merged['total_listen_count'] # 将用户和歌曲编码为数字 small_set = triplet_dataset_sub_song_mergedpd user_codes = small_set.user.drop_duplicates().reset_index() song_codes = small_set.song.drop_duplicates().reset_index() user_codes.rename(columns={'index': 'user_index'}, inplace=True) song_codes.rename(columns={'index': 'song_index'}, inplace=True) song_codes['so_index_value'] = list(song_codes.index) user_codes['us_index_value'] = list(user_codes.index) small_set = pd.merge(small_set, song_codes, how='left') small_set = pd.merge(small_set, user_codes, how='left') # 将数据转换为稀疏矩阵形式 from scipy.sparse import coo_matrix mat_candidate = small_set[['us_index_value', 'so_index_value', 'fractional_play_count']] data_array = mat_candidate.fractional_play_count.values row_array = mat_candidate.us_index_value.values col_array = mat_candidate.so_index_value.values data_sparse = coo_matrix((data_array, (row_array, col_array)), dtype=float) # 使用SVD方法进行矩阵分解并进行推荐 from scipy.sparse import csc_matrix from scipy.sparse.linalg import svds import math as mt def compute_svd(urm, K): U, s, Vt = svds(urm, K) dim = (len(s), len(s)) S = np.zeros(dim, dtype=np.float32) for i in range(0, len(s)): S[i, i] = mt.sqrt(s[i]) U = csc_matrix(U, dtype=np.float32) S = csc_matrix(S, dtype=np.float32) Vt = csc_matrix(Vt, dtype=np.float32) return U, S, Vt def compute_estimated_matrix(urm, U, S, Vt, uTest, K, test): rightTerm = S * Vt max_recommendation = 250 estimatedRatings = np.zeros(shape=(MAX_UID, MAX_PID), dtype=np.float16) recomendRatings = np.zeros(shape=(MAX_UID, max_recommendation), dtype=np.float16) for userTest in uTest: prod = U[userTest, :] * rightTerm estimatedRatings[userTest, :] = prod.todense() recomendRatings[userTest, :] = (-estimatedRatings[userTest, :]).argsort()[:max_recommendation] return recomendRatings K = 50 urm = data_sparse MAX_PID = urm.shape[1] MAX_UID = urm.shape[0] U, S, Vt = compute_svd(urm, K) uTest = [4, 5, 6, 7, 8, 73, 23] # uTest=[1b5bb32767963cbc215d27a24fef1aa01e933025] uTest_recommended_items = compute_estimated_matrix(urm, U, S, Vt 继续将这段代码输出完整

将上述代码放入了Recommenders.py文件中,作为一个自定义工具包。将下列代码中调用scipy包中svd的部分。转为使用Recommenders.py工具包中封装的svd方法。给出修改后的完整代码。import pandas as pd import math as mt import numpy as np from sklearn.model_selection import train_test_split from Recommenders import * from scipy.sparse.linalg import svds from scipy.sparse import coo_matrix from scipy.sparse import csc_matrix # Load and preprocess data triplet_dataset_sub_song_merged = triplet_dataset_sub_song_mergedpd # load dataset triplet_dataset_sub_song_merged_sum_df = triplet_dataset_sub_song_merged[['user','listen_count']].groupby('user').sum().reset_index() triplet_dataset_sub_song_merged_sum_df.rename(columns={'listen_count':'total_listen_count'},inplace=True) triplet_dataset_sub_song_merged = pd.merge(triplet_dataset_sub_song_merged,triplet_dataset_sub_song_merged_sum_df) triplet_dataset_sub_song_merged['fractional_play_count'] = triplet_dataset_sub_song_merged['listen_count']/triplet_dataset_sub_song_merged['total_listen_count'] # Convert data to sparse matrix format small_set = triplet_dataset_sub_song_merged user_codes = small_set.user.drop_duplicates().reset_index() song_codes = small_set.song.drop_duplicates().reset_index() user_codes.rename(columns={'index':'user_index'}, inplace=True) song_codes.rename(columns={'index':'song_index'}, inplace=True) song_codes['so_index_value'] = list(song_codes.index) user_codes['us_index_value'] = list(user_codes.index) small_set = pd.merge(small_set,song_codes,how='left') small_set = pd.merge(small_set,user_codes,how='left') mat_candidate = small_set[['us_index_value','so_index_value','fractional_play_count']] data_array = mat_candidate.fractional_play_count.values row_array = mat_candidate.us_index_value.values col_array = mat_candidate.so_index_value.values data_sparse = coo_matrix((data_array, (row_array, col_array)),dtype=float) # Compute SVD def compute_svd(urm, K): U, s, Vt = svds(urm, K) dim = (len(s), len(s)) S = np.zeros(dim, dtype=np.float32) for i in range(0, len(s)): S[i,i] = mt.sqrt(s[i]) U = csc_matrix(U, dtype=np.float32) S = csc_matrix(S, dtype=np.float32) Vt = csc_matrix(Vt, dtype=np.float32) return U, S, Vt def compute_estimated_matrix(urm, U, S, Vt, uTest, K, test): rightTerm = S*Vt max_recommendation = 10 estimatedRatings = np.zeros(shape=(MAX_UID, MAX_PID), dtype=np.float16) recomendRatings = np.zeros(shape=(MAX_UID,max_recommendation ), dtype=np.float16) for userTest in uTest: prod = U[userTest, :]*rightTerm estimatedRatings[userTest, :] = prod.todense() recomendRatings[userTest, :] = (-estimatedRatings[userTest, :]).argsort()[:max_recommendation] return recomendRatings K=50 # number of factors urm = data_sparse MAX_PID = urm.shape[1] MAX_UID = urm.shape[0] U, S, Vt = compute_svd(urm, K) # Compute recommendations for test users # Compute recommendations for test users uTest = [1,6,7,8,23] uTest_recommended_items = compute_estimated_matrix(urm, U, S, Vt, uTest, K, True) # Output recommended songs in a dataframe recommendations = pd.DataFrame(columns=['user','song', 'score','rank']) for user in uTest: rank = 1 for song_index in uTest_recommended_items[user, 0:10]: song = small_set.loc[small_set['so_index_value'] == song_index].iloc[0] # Get song details recommendations = recommendations.append({'user': user, 'song': song['title'], 'score': song['fractional_play_count'], 'rank': rank}, ignore_index=True) rank += 1 display(recommendations)

import pandas as pd import math as mt import numpy as np from sklearn.model_selection import train_test_split from Recommenders import SVDRecommender triplet_dataset_sub_song_merged = triplet_dataset_sub_song_mergedpd triplet_dataset_sub_song_merged_sum_df = triplet_dataset_sub_song_merged[['user','listen_count']].groupby('user').sum().reset_index() triplet_dataset_sub_song_merged_sum_df.rename(columns={'listen_count':'total_listen_count'},inplace=True) triplet_dataset_sub_song_merged = pd.merge(triplet_dataset_sub_song_merged,triplet_dataset_sub_song_merged_sum_df) triplet_dataset_sub_song_merged['fractional_play_count'] = triplet_dataset_sub_song_merged['listen_count']/triplet_dataset_sub_song_merged small_set = triplet_dataset_sub_song_merged user_codes = small_set.user.drop_duplicates().reset_index() song_codes = small_set.song.drop_duplicates().reset_index() user_codes.rename(columns={'index':'user_index'}, inplace=True) song_codes.rename(columns={'index':'song_index'}, inplace=True) song_codes['so_index_value'] = list(song_codes.index) user_codes['us_index_value'] = list(user_codes.index) small_set = pd.merge(small_set,song_codes,how='left') small_set = pd.merge(small_set,user_codes,how='left') mat_candidate = small_set[['us_index_value','so_index_value','fractional_play_count']] data_array = mat_candidate.fractional_play_count.values row_array = mat_candidate.us_index_value.values col_array = mat_candidate.so_index_value.values data_sparse = coo_matrix((data_array, (row_array, col_array)),dtype=float) K=50 urm = data_sparse MAX_PID = urm.shape[1] MAX_UID = urm.shape[0] recommender = SVDRecommender(K) U, S, Vt = recommender.fit(urm) Compute recommendations for test users uTest = [1,6,7,8,23] uTest_recommended_items = recommender.recommend(uTest, urm, 10) Output recommended songs in a dataframe recommendations = pd.DataFrame(columns=['user','song', 'score','rank']) for user in uTest: rank = 1 for song_index in uTest_recommended_items[user, 0:10]: song = small_set.loc[small_set['so_index_value'] == song_index].iloc[0] # Get song details recommendations = recommendations.append({'user': user, 'song': song['title'], 'score': song['fractional_play_count'], 'rank': rank}, ignore_index=True) rank += 1 display(recommendations)这段代码报错了,为什么?给出修改后的 代码

def MEAN_Spot(opt): # channel 1 inputs1 = layers.Input(shape=(42,42,1)) conv1 = layers.Conv2D(3, (5,5), padding='same', activation='relu', kernel_regularizer=l2(0.001))(inputs1) bn1 = layers.BatchNormalization()(conv1) pool1 = layers.MaxPooling2D(pool_size=(3, 3), padding='same', strides=(3,3))(bn1) do1 = layers.Dropout(0.3)(pool1) # channel 2 inputs2 = layers.Input(shape=(42,42,1)) conv2 = layers.Conv2D(3, (5,5), padding='same', activation='relu', kernel_regularizer=l2(0.001))(inputs2) bn2 = layers.BatchNormalization()(conv2) pool2 = layers.MaxPooling2D(pool_size=(3, 3), padding='same', strides=(3,3))(bn2) do2 = layers.Dropout(0.3)(pool2) # channel 3 inputs3 = layers.Input(shape=(42,42,1)) conv3 = layers.Conv2D(8, (5,5), padding='same', activation='relu', kernel_regularizer=l2(0.001))(inputs3) bn3 = layers.BatchNormalization()(conv3) pool3 = layers.MaxPooling2D(pool_size=(3, 3), padding='same', strides=(3,3))(bn3) do3 = layers.Dropout(0.3)(pool3) # merge 1 merged = layers.Concatenate()([do1, do2, do3]) # interpretation 1 merged_conv = layers.Conv2D(8, (5,5), padding='same', activation='relu', kernel_regularizer=l2(0.1))(merged) merged_pool = layers.MaxPooling2D(pool_size=(2, 2), padding='same', strides=(2,2))(merged_conv) flat = layers.Flatten()(merged_pool) flat_do = layers.Dropout(0.2)(flat) # outputs outputs = layers.Dense(1, activation='linear', name='spot')(flat_do) #Takes input u, v, os model = keras.models.Model(inputs=[inputs1, inputs2, inputs3], outputs=[outputs]) model.compile( loss={'spot':'mse'}, optimizer=opt, metrics={'spot':tf.keras.metrics.MeanAbsoluteError()}, ) return model 如何引入CBAM模块

最新推荐

recommend-type

六首页数字藏品NFT交易网React NextJS网站模板 六首页数字藏品nft交易网反应NextJS网站模板

六首页数字藏品NFT交易网React NextJS网站模板 六首页数字藏品nft交易网反应NextJS网站模板
recommend-type

wireshark安装教程入门

wireshark安装教程入门
recommend-type

基于C++负数据库的隐私保护在线医疗诊断系统

【作品名称】:基于C++负数据库的隐私保护在线医疗诊断系统 【适用人群】:适用于希望学习不同技术领域的小白或进阶学习者。可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【项目介绍】: 基于负数据库的隐私保护在线医疗诊断系统 NDBMedicalSystem 客户端及服务器端 本项目是在保护用户隐私的前提下,完成了对新冠肺炎、乳腺癌、眼疾等多种疾病的智能诊断。
recommend-type

基本的嵌入式操作系统给

任务管理
recommend-type

3-10.py

3-10
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

2. 通过python绘制y=e-xsin(2πx)图像

可以使用matplotlib库来绘制这个函数的图像。以下是一段示例代码: ```python import numpy as np import matplotlib.pyplot as plt def func(x): return np.exp(-x) * np.sin(2 * np.pi * x) x = np.linspace(0, 5, 500) y = func(x) plt.plot(x, y) plt.xlabel('x') plt.ylabel('y') plt.title('y = e^{-x} sin(2πx)') plt.show() ``` 运行这段
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。