这个代码出现上面问题呢:data_load=xlsread('data_load'); % 划分训练集和测试集 train_ratio = 0.8; % 训练集所占比例 train_size = round(size(data_load,1)*train_ratio); train_data = data_load(1:train_size,:); test_data = data_load(train_size+1:end,:); % 数据归一化 [train_data,train_settings] = mapminmax(train_data'); train_data = train_data'; test_data = mapminmax('apply',test_data',train_settings)'; test_data = test_data'; % 构造训练集和测试集的输入和输出 input_train = train_data(1:end-1,:); output_train = train_data(2:end,:); input_test = test_data(1:end-1,:); output_test = test_data(2:end,:); input_train_cell = num2cell(input_train',1); % 将输入数据转换为元胞数组 output_train_cell = num2cell(output_train',1); % 将输出数据转换为元胞数组 input_test_cell = num2cell(input_test',1); % 将输入数据转换为元胞数组 output_test_cell = num2cell(output_test',1); % 将输出数据转换为元胞数组 % 配置 LSTM 网络 numFeatures = size(input_train,2); % 特征数 numResponses = size(output_train,2); % 输出数 numHiddenUnits = 100; % 隐藏层神经元数 layers = [ ... sequenceInputLayer(numFeatures) lstmLayer(numHiddenUnits,'OutputMode','last') fullyConnectedLayer(numResponses) regressionLayer]; options = trainingOptions('adam', ... 'MaxEpochs',100, ... 'GradientThreshold',1, ... 'InitialLearnRate',0.01, ... 'LearnRateSchedule','piecewise', ... 'LearnRateDropFactor',0.1, ... 'LearnRateDropPeriod',20, ... 'MiniBatchSize',64, ... 'SequenceLength','longest', ... 'Shuffle','never', ... 'ValidationData',{input_test,output_test}, ... 'ValidationFrequency',10, ... 'Plots','training-progress'); % 训练 LSTM 网络 net = trainNetwork(input_train_cell,output_train_cell,layers,options); % 使用元胞数组格式的输入和输出数据进行训练
时间: 2023-12-19 19:06:50 浏览: 84
这段代码主要是用于将数据划分为训练集和测试集,并对数据进行归一化处理,然后使用 LSTM 网络进行训练。其中,训练集占据了所有数据的 80%。代码中还使用了一些 MATLAB 自带的工具函数来配置 LSTM 网络和训练参数。如果你遇到了问题,可以具体说明一下你遇到的问题,这样我才能更好地帮助你解决问题。
相关问题
% 导入数据 data_load=xlsread('data_load'); % 划分训练集和测试集 train_ratio = 0.8; % 训练集所占比例 train_size = round(size(data_load,1)*train_ratio); train_data = data_load(1:train_size,:); test_data = data_load(train_size+1:end,:); % 数据归一化 [train_data,train_settings] = mapminmax(train_data'); train_data = train_data'; test_data = mapminmax('apply',test_data',train_settings)'; test_data = test_data'; % 构造训练集和测试集的输入和输出 input_train = train_data(1:end-1,:); output_train = train_data(2:end,:); input_test = test_data(1:end-1,:); output_test = test_data(2:end,:);。 后面怎么进行lstm负荷预测
构造好训练集和测试集的输入和输出之后,接下来可以开始构建LSTM模型进行负荷预测。首先需要使用MATLAB中的`lstmLayer`函数创建一个LSTM层对象,然后使用`sequenceInputLayer`和`sequenceOutputLayer`函数创建输入和输出层对象。接着将这些层对象传入`layerGraph`函数中构建网络结构,最后使用`trainNetwork`函数进行训练。下面是一个简单的LSTM网络代码示例:
```matlab
numFeatures = size(input_train,2); % 特征数
numResponses = size(output_train,2); % 输出数
numHiddenUnits = 100; % 隐藏层神经元数
layers = [ ...
sequenceInputLayer(numFeatures)
lstmLayer(numHiddenUnits,'OutputMode','last')
fullyConnectedLayer(numResponses)
regressionLayer];
options = trainingOptions('adam', ...
'MaxEpochs',100, ...
'GradientThreshold',1, ...
'InitialLearnRate',0.01, ...
'LearnRateSchedule','piecewise', ...
'LearnRateDropFactor',0.1, ...
'LearnRateDropPeriod',20, ...
'MiniBatchSize',64, ...
'SequenceLength','longest', ...
'Shuffle','never', ...
'ValidationData',{input_test,output_test}, ...
'ValidationFrequency',10, ...
'Plots','training-progress');
net = trainNetwork(input_train',output_train',layers,options);
```
在训练完成后,可以使用`predict`函数对测试集数据进行预测:
```matlab
YPred = predict(net,input_test')';
```
最后,可以使用`mapminmax`函数将预测结果进行反归一化,以得到真实的负荷预测值。
data=xlsread('data_load'); % 按时间排序 load_data = sortrows(data, 1); % 生成训练集和测试集 train_ratio = 0.8; train_size = floor(train_ratio * size(load_data, 1)); train_data = load_data(1:train_size, 2:end); test_data = load_data(train_size+1:end, 2:end); % 数据归一化 train_data_norm = normalize(train_data); test_data_norm = normalize(test_data); % 准备训练数据 X_train = []; Y_train = []; n_steps = 3; % 每个时间步长包含的数据点数 for i = n_steps:size(train_data_norm, 1) X_train = [X_train; train_data_norm(i-n_steps+1:i, :)]; Y_train = [Y_train; train_data_norm(i, :)]; end % 调整训练数据的形状 X_train = permute(reshape(X_train', [], n_steps, size(X_train,1)), [3, 2, 1]); Y_train = permute(reshape(Y_train', [], n_steps, size(Y_train,1)), [3, 2, 1]); % 构建LSTM模型 input_size = size(train_data,2)-1; output_size = size(train_data,2)-1; num_hidden_units = 64; layers = [ ... sequenceInputLayer(input_size) lstmLayer(num_hidden_units,'OutputMode','last') fullyConnectedLayer(output_size) regressionLayer]; % 训练模型 opts = trainingOptions('adam', ... 'MaxEpochs',50, ... 'GradientThreshold',1, ... 'InitialLearnRate',0.01, ... 'LearnRateSchedule','piecewise', ... 'LearnRateDropFactor',0.1, ... 'LearnRateDropPeriod',30, ... 'Verbose',0, ... 'Plots','training-progress'); trained_net = trainNetwork(X_train, Y_train, layers, opts); % 准备测试数据 X_test = []; Y_test = []; for i = n_steps:size(test_data_norm, 1) X_test = [X_test; test_data_norm(i-n_steps+1:i, :)]; Y_test = [Y_test; test_data_norm(i, :)]; end % 调整测试数据的形状 X_test = reshape(X_test, [size(X_test,1), n_steps, size(test_data,2)-1]); Y_test = reshape(Y_test, [size(Y_test,1), size(test_data,2)-1]); % 进行预测 Y_pred = predict(trained_net, X_test); % 反归一化预测结果 Y_pred = Y_pred .* max(train_data) + min(train_data); Y_test = Y_test .* max(train_data) + min(train_data); % 绘制预测结果 figure plot(Y_test(:,1), 'b') hold on plot(Y_pred(:,1), 'r') legend('真实值', '预测值') title('负荷预测结果') xlabel('时间步长') ylabel('负荷值')
根据您提供的代码,出错的原因是您的输入数据的特征维度为 51,但是您的模型的输入层需要的特征维度为 2。这是因为您在将数据转换为训练数据时,使用了所有特征。您需要仅选择前两个特征作为输入,即时间和负荷值。您可以在以下代码中对 `train_data_norm` 进行修改,以仅选择前两个特征作为输入:
```
% 准备训练数据
X_train = [];
Y_train = [];
n_steps = 3; % 每个时间步长包含的数据点数
for i = n_steps:size(train_data_norm, 1)
X_train = [X_train; train_data_norm(i-n_steps+1:i, 1:2)]; % 只选择前两个特征作为输入
Y_train = [Y_train; train_data_norm(i, 1:2)];
end
```
这样可以确保您的输入数据的特征维度为 2,与您的模型的输入层所需的特征维度相匹配。
阅读全文