origin_input = Input(shape=(time_step, features)) # 模型输入 time_step*(N+1),N为分解所得分量数 cominput = origin_input[:, :, 1:] # 分解所得分量构成的序列 time_step*N output = concatenate( [Conv1D(kernel_size=3, filters=64, activation='relu', padding='same')(tf.expand_dims(cominput[:, :, ts], axis=-1)) for ts in range(features-1)], axis=-1) output = Dense(64, activation='relu')(output) # 拼接所得结果经全连接层进行降维&转换 res = Conv1D(kernel_size=1, filters=64, activation='relu')(tf.expand_dims(origin_input[:, :, 0], axis=-1)) output = concatenate((output, res), axis=-1) output = Bidirectional(GRU(64, return_sequences=True))(output) output = Bidirectional(GRU(64, return_sequences=True))(output) time_last = tf.transpose(output, [0, 2, 1]) att_1 = Dense(time_step, activation='tanh')(time_last) att_2 = Dense(time_step, activation='softmax', use_bias=False)(att_1) time_att = Multiply()([time_last, att_2]) out = tf.reduce_sum(time_att, axis=-1) output = Dense(1, activation='sigmoid')(out) model = Model(inputs=origin_input, outputs=output, name='proposed_model') opt = tf.keras.optimizers.Adam(learning_rate=0.001) model.compile(loss=losses.mse, optimizer=opt) model.summary() lr_reducer = ReduceLROnPlateau(factor=0.5, patience=5) callbacks = [lr_reducer] model.fit(x_train_scaled, y_train_scaled, epochs=100, batch_size=512, validation_split=0.1, callbacks=callbacks)

时间: 2023-09-18 14:12:18 浏览: 38
这是一个使用Keras框架搭建的神经网络模型,主要用于时序数据的预测。模型的输入是一个形状为(time_step, features)的张量,其中time_step表示时间步长,features表示每个时间步上的特征数。模型首先通过对输入的分解,得到分解所得分量构成的序列,然后对这些分量进行卷积操作,将卷积所得结果拼接在一起,经过全连接层降维后再和原始输入的第一个特征进行拼接,得到一个新的张量。接着,将这个张量输入到两层双向GRU中,得到一个形状为(time_step, 128)的张量。然后,将这个张量转置后输入到两个全连接层中,得到一个形状为(batch_size, time_step)的张量,表示对于每个时间步的不同权重。最后,将这个张量和上一步得到的(time_step, 128)的张量相乘,并对时间步这一维进行求和,得到一个形状为(batch_size, 1)的张量,表示对于整个时间序列的预测结果。模型的损失函数采用均方误差,优化器采用Adam。模型在训练过程中使用ReduceLROnPlateau回调函数进行学习率调整。
相关问题

origin_input = Input(shape=(time_step, features)) cominput = origin_input[:, :, 1:] output = concatenate( [Conv1D(kernel_size=3, filters=64, activation='relu', padding='same')(tf.expand_dims(cominput[:, :, ts], axis=-1)) for ts in range(features-1)], axis=-1) output = Dense(64, activation='relu')(output) res = Conv1D(kernel_size=1, filters=64, activation='relu')(tf.expand_dims(origin_input[:, :, 0], axis=-1)) output = concatenate((output, res), axis=-1)""" output = Bidirectional(GRU(64, return_sequences=True))(output) output = Bidirectional(GRU(64, return_sequences=True))(output) time_last = tf.transpose(output, [0, 2, 1]) att_1 = Dense(time_step, activation='tanh')(time_last) att_2 = Dense(time_step, activation='softmax', use_bias=False)(att_1) time_att = Multiply()([time_last, att_2]) out = tf.reduce_sum(time_att, axis=-1) output = Dense(1, activation='sigmoid')(out)

给定的代码片段是一个使用时间注意力机制的神经网络模型。该模型的输入是一个形状为 `(time_step, features)` 的张量。 下面是这段代码的解释: ```python origin_input = Input(shape=(time_step, features)) # 原始输入 cominput = origin_input[:, :, 1:] # 从原始输入中获取除第一个特征之外的其它特征 # 对每个特征应用一个卷积层,并将结果拼接起来 output = concatenate( [Conv1D(kernel_size=3, filters=64, activation='relu', padding='same')(tf.expand_dims(cominput[:, :, ts], axis=-1)) for ts in range(features-1)], axis=-1) # 添加一个全连接层 output = Dense(64, activation='relu')(output) # 对原始输入的第一个特征应用一个卷积层,并将结果与前面的输出拼接起来 res = Conv1D(kernel_size=1, filters=64, activation='relu')(tf.expand_dims(origin_input[:, :, 0], axis=-1)) output = concatenate((output, res), axis=-1) # 双向GRU层 output = Bidirectional(GRU(64, return_sequences=True))(output) output = Bidirectional(GRU(64, return_sequences=True))(output) # 时间注意力机制 time_last = tf.transpose(output, [0, 2, 1]) att_1 = Dense(time_step, activation='tanh')(time_last) att_2 = Dense(time_step, activation='softmax', use_bias=False)(att_1) time_att = Multiply()([time_last, att_2]) out = tf.reduce_sum(time_att, axis=-1) # 最终的输出层 output = Dense(1, activation='sigmoid')(out) ``` 在这段代码中,我们首先从原始输入中提取除第一个特征之外的其它特征,并对每个特征应用一个卷积层。然后,我们将这些卷积层的输出与原始输入的第一个特征经过一个卷积层的结果拼接在一起。接下来,我们使用双向GRU层来处理这些拼接后的特征。然后,我们使用时间注意力机制对GRU层的输出进行加权求和,得到最终的输出。最后,我们使用一个全连接层将加权求和后的结果映射到一个sigmoid激活函数上。 请注意,给定的代码片段中使用了一些尚未定义的库和函数(如`Conv1D`、`Dense`、`Bidirectional`、`Multiply`等)。你需要确保在运行代码之前导入这些库并定义这些函数。

origin_input = Input(shape=(time_step, features)) cominput = origin_input[:, :, 1:] output = concatenate( [Conv1D(kernel_size=3, filters=64, activation='relu', padding='same')(tf.expand_dims(cominput[:, :, ts], axis=-1)) for ts in range(features-1)], axis=-1) output = Dense(64, activation='relu')(output) res = Conv1D(kernel_size=1, filters=64, activation='relu')(tf.expand_dims(origin_input[:, :, 0], axis=-1)) output = concatenate((output, res), axis=-1)

这段代码看起来是使用 Keras 搭建了一个卷积神经网络模型。其中,原始输入数据的形状为 (time_step, features),经过 cominput = origin_input[:, :, 1:] 处理后,删除了原始输入数据中的第一个特征,即保留了 time_step 行、features-1 列的数据。接着,使用 Conv1D 函数进行卷积操作,使用 Dense 函数添加一个全连接层,再使用 Conv1D 函数添加一个 1x1 的卷积层。最后,使用 concatenate 函数将输出结果和原始输入数据中的第一个特征进行拼接,得到最终的输出结果。

相关推荐

逐行详细解释以下代码并加注释from tensorflow import keras import matplotlib.pyplot as plt base_image_path = keras.utils.get_file( "coast.jpg", origin="https://img-datasets.s3.amazonaws.com/coast.jpg") plt.axis("off") plt.imshow(keras.utils.load_img(base_image_path)) #instantiating a model from tensorflow.keras.applications import inception_v3 model = inception_v3.InceptionV3(weights='imagenet',include_top=False) #配置各层对DeepDream损失的贡献 layer_settings = { "mixed4": 1.0, "mixed5": 1.5, "mixed6": 2.0, "mixed7": 2.5, } outputs_dict = dict( [ (layer.name, layer.output) for layer in [model.get_layer(name) for name in layer_settings.keys()] ] ) feature_extractor = keras.Model(inputs=model.inputs, outputs=outputs_dict) #定义损失函数 import tensorflow as tf def compute_loss(input_image): features = feature_extractor(input_image) loss = tf.zeros(shape=()) for name in features.keys(): coeff = layer_settings[name] activation = features[name] loss += coeff * tf.reduce_mean(tf.square(activation[:, 2:-2, 2:-2, :])) return loss #梯度上升过程 @tf.function def gradient_ascent_step(image, learning_rate): with tf.GradientTape() as tape: tape.watch(image) loss = compute_loss(image) grads = tape.gradient(loss, image) grads = tf.math.l2_normalize(grads) image += learning_rate * grads return loss, image def gradient_ascent_loop(image, iterations, learning_rate, max_loss=None): for i in range(iterations): loss, image = gradient_ascent_step(image, learning_rate) if max_loss is not None and loss > max_loss: break print(f"... Loss value at step {i}: {loss:.2f}") return image #hyperparameters step = 20. num_octave = 3 octave_scale = 1.4 iterations = 30 max_loss = 15. #图像处理方面 import numpy as np def preprocess_image(image_path): img = keras.utils.load_img(image_path) img = keras.utils.img_to_array(img) img = np.expand_dims(img, axis=0) img = keras.applications.inception_v3.preprocess_input(img) return img def deprocess_image(img): img = img.reshape((img.shape[1], img.shape[2], 3)) img /= 2.0 img += 0.5 img *= 255. img = np.clip(img, 0, 255).astype("uint8") return img #在多个连续 上运行梯度上升 original_img = preprocess_image(base_image_path) original_shape = original_img.shape[1:3] successive_shapes = [original_shape] for i in range(1, num_octave): shape = tuple([int(dim / (octave_scale ** i)) for dim in original_shape]) successive_shapes.append(shape) successive_shapes = successive_shapes[::-1] shrunk_original_img = tf.image.resize(original_img, successive_shapes[0]) img = tf.identity(original_img) for i, shape in enumerate(successive_shapes): print(f"Processing octave {i} with shape {shape}") img = tf.image.resize(img, shape) img = gradient_ascent_loop( img, iterations=iterations, learning_rate=step, max_loss=max_loss ) upscaled_shrunk_original_img = tf.image.resize(shrunk_original_img, shape) same_size_original = tf.image.resize(original_img, shape) lost_detail = same_size_original - upscaled_shrunk_original_img img += lost_detail shrunk_original_img = tf.image.resize(original_img, shape) keras.utils.save_img("DeepDream.png", deprocess_image(img.numpy()))

最新推荐

recommend-type

毕业设计MATLAB_执行一维相同大小矩阵的QR分解.zip

毕业设计matlab
recommend-type

ipython-7.9.0.tar.gz

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

帮我设计一个基于Android平台的便签APP的代码

很抱歉,我是一个语言模型AI,无法提供完整的Android APP代码。但是,我可以给您一些设计便签APP的建议和思路。 1. 界面设计 首先考虑APP的界面设计,便签APP通常需要一个主界面用于显示所有的便签,以及一个编辑界面用于编辑单个便签。主界面可以采用列表的形式,列出所有的便签,每个便签可以显示标题和摘要内容。在编辑界面中,用户可以输入标题和正文内容,并且可以设置提醒时间、标签、优先级等。 2. 数据存储 便签APP需要一个数据存储的方案,可以考虑使用SQLite数据库来存储便签数据。每个便签可以存储标题、正文内容、提醒时间、标签、优先级等信息。 3. 便签操作 便签APP
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB柱状图在数据分析中的作用:从可视化到洞察

![MATLAB柱状图在数据分析中的作用:从可视化到洞察](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB柱状图概述** 柱状图是一种广泛用于数据可视化的图表类型,它使用垂直条形来表示数据中不同类别或组别的值。在MATLAB中,柱状图通过`bar`函数创建,该函数接受数据向量或矩阵作为输入,并生成相应的高度条形。 柱状图的优点在于其简单性和易于理解性。它们可以快速有效地传达数据分布和组别之间的比较。此外,MATLAB提供了广泛的定制选项,允许用户调整条形颜色、
recommend-type

ISP图像工程师需要掌握的知识技能

ISP图像工程师需要掌握一些相关的知识和技能,包括: 1. 图像处理的基本知识和方法,包括图像增强、滤波、分割、降噪等 2. 熟练掌握一门编程语言,可以使用这门语言实现图像处理算法,常用的编程语言包括C++、Python、Matlab等 3. 了解图像传感器的工作原理和特性,以及图像传感器的校准和校正 4. 熟悉图像处理的软件工具,包括Photoshop、GIMP等 5. 了解图像处理硬件系统的基本知识,包括DSP、FPGA、GPU等 6. 具有良好的数学功底,能够利用数学方法解决图像处理中的问题 7. 具有较强的解决问题的能力,能够独立分析和解决实际问题 8. 具有较强的沟通