DCA特征融合的代码实现
时间: 2023-12-27 11:46:32 浏览: 227
DCA(Dynamic Co-Attention)是一种基于深度学习的文本特征融合方法,可以用于文本分类、问答等任务。以下是一个基于TensorFlow实现DCA特征融合的代码示例:
```python
import tensorflow as tf
class DCA(tf.keras.layers.Layer):
def __init__(self, hidden_size, **kwargs):
self.hidden_size = hidden_size
super(DCA, self).__init__(**kwargs)
def build(self, input_shape):
assert isinstance(input_shape, list)
self.Wq = self.add_weight(name='Wq', shape=(input_shape[0][-1], self.hidden_size),
initializer=tf.keras.initializers.glorot_uniform(),
trainable=True)
self.Wp = self.add_weight(name='Wp', shape=(input_shape[1][-1], self.hidden_size),
initializer=tf.keras.initializers.glorot_uniform(),
trainable=True)
self.Wx = self.add_weight(name='Wx', shape=(input_shape[0][-1], self.hidden_size),
initializer=tf.keras.initializers.glorot_uniform(),
trainable=True)
super(DCA, self).build(input_shape)
def call(self, inputs):
assert isinstance(inputs, list)
q, p = inputs
# co-attention
Q = tf.matmul(q, self.Wq) # (batch_size, q_len, hidden_size)
P = tf.matmul(p, self.Wp, transpose_b=True) # (batch_size, hidden_size, p_len)
S = tf.matmul(Q, P) # (batch_size, q_len, p_len)
a_Q = tf.nn.softmax(S, axis=1) # (batch_size, q_len, p_len)
a_P = tf.nn.softmax(S, axis=2) # (batch_size, q_len, p_len)
c_Q = tf.matmul(a_Q, p) # (batch_size, q_len, hidden_size)
c_P = tf.matmul(tf.matmul(a_Q, a_P, transpose_b=True), q) # (batch_size, p_len, hidden_size)
# dynamic fusion
x = tf.concat([q, c_Q, q*c_Q, q*c_P], axis=-1) # (batch_size, q_len, 4*hidden_size)
u = tf.matmul(x, self.Wx) # (batch_size, q_len, hidden_size)
return u
def compute_output_shape(self, input_shape):
assert isinstance(input_shape, list)
return (input_shape[0][0], input_shape[0][1], self.hidden_size)
```
该代码实现了DCA的主要步骤:
1. 首先进行co-attention,即计算问题和文本之间的交互,得到问题和文本的注意力权重;
2. 然后进行dynamic fusion,将问题、文本和注意力权重进行融合,得到最终的特征表示。
使用该DCA层可以方便地将文本特征融合到一起,例如:
```python
import tensorflow as tf
q_input = tf.keras.Input(shape=(None, 128), name='q_input')
p_input = tf.keras.Input(shape=(None, 128), name='p_input')
dca = DCA(hidden_size=64)([q_input, p_input])
output = tf.keras.layers.Dense(10, activation='softmax')(dca)
model = tf.keras.Model(inputs=[q_input, p_input], outputs=output)
model.compile(optimizer='adam', loss='categorical_crossentropy')
model.fit(x=[q_train, p_train], y=y_train, batch_size=32, epochs=10, validation_data=([q_val, p_val], y_val))
```
上述代码中,q_input和p_input分别表示问题和文本的输入,经过DCA层进行特征融合,最终输出一个10维的向量。在训练时,需要将问题、文本和标签一起作为训练数据。
阅读全文