基于pytorch 实现书法识别案例代码并解释
时间: 2024-02-28 18:55:46 浏览: 65
基于pytorch的深度学习模型构建案例代码
以下是基于 PyTorch 实现的书法识别案例代码及其解释:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
from PIL import Image
# 定义自定义数据集类,用于读取和处理书法图片数据
class CalligraphyDataset(Dataset):
def __init__(self, img_path, label_path, transform=None):
self.img_path = img_path
self.label_path = label_path
self.transform = transform
self.imgs = []
self.labels = []
with open(self.label_path, 'r') as f:
for line in f.readlines():
self.labels.append(int(line.strip()))
for label in self.labels:
img = Image.open(self.img_path.format(label))
self.imgs.append(img)
def __getitem__(self, index):
img = self.imgs[index]
label = self.labels[index]
if self.transform:
img = self.transform(img)
return img, label
def __len__(self):
return len(self.imgs)
# 定义卷积神经网络模型
class ConvNet(nn.Module):
def __init__(self):
super(ConvNet, self).__init__()
self.conv1 = nn.Conv2d(1, 16, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(16, 32, 5)
self.fc1 = nn.Linear(32 * 4 * 4, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool(torch.relu(self.conv1(x)))
x = self.pool(torch.relu(self.conv2(x)))
x = x.view(-1, 32 * 4 * 4)
x = torch.relu(self.fc1(x))
x = torch.relu(self.fc2(x))
x = self.fc3(x)
return x
# 定义训练函数
def train(model, dataloader, criterion, optimizer):
model.train()
running_loss = 0.0
for i, (inputs, labels) in enumerate(dataloader):
inputs = inputs.to(device)
labels = labels.to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
return running_loss / len(dataloader)
# 定义测试函数
def test(model, dataloader, criterion):
model.eval()
running_loss = 0.0
correct = 0
total = 0
with torch.no_grad():
for i, (inputs, labels) in enumerate(dataloader):
inputs = inputs.to(device)
labels = labels.to(device)
outputs = model(inputs)
loss = criterion(outputs, labels)
running_loss += loss.item()
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
return running_loss / len(dataloader), correct / total
# 定义主函数
if __name__ == '__main__':
# 设置训练参数
epochs = 10
batch_size = 16
learning_rate = 0.001
# 创建数据预处理器
transform = transforms.Compose([
transforms.Grayscale(),
transforms.Resize((32, 32)),
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
])
# 创建数据集和数据加载器
train_dataset = CalligraphyDataset('train/{:02d}.jpg', 'train/label.txt', transform=transform)
test_dataset = CalligraphyDataset('test/{:02d}.jpg', 'test/label.txt', transform=transform)
train_dataloader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_dataloader = DataLoader(test_dataset, batch_size=batch_size, shuffle=True)
# 创建模型和优化器
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = ConvNet().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
# 训练和测试模型
for epoch in range(epochs):
train_loss = train(model, train_dataloader, criterion, optimizer)
test_loss, test_acc = test(model, test_dataloader, criterion)
print('Epoch [{}/{}], Train Loss: {:.4f}, Test Loss: {:.4f}, Test Acc: {:.4f}'.format(
epoch+1, epochs, train_loss, test_loss, test_acc))
```
这个代码实现了一个简单的书法识别系统,使用了卷积神经网络(ConvNet)作为模型,并使用 PyTorch 进行模型的训练和测试。主要步骤如下:
1. 定义了一个自定义数据集类 `CalligraphyDataset`,用于读取和处理书法图片数据。在这个类中,通过 `PIL` 库读取图片,并将其转换为 `Tensor` 类型,同时读取标签数据。
2. 定义了卷积神经网络模型 `ConvNet`,包括两个卷积层、两个池化层和三个全连接层。在前两个卷积层中使用了 `ReLU` 激活函数,最后一个全连接层使用了 `Softmax` 函数作为输出。
3. 定义了训练函数 `train` 和测试函数 `test`,分别用于模型的训练和测试。在训练函数中,使用了 `Adam` 优化器和交叉熵损失函数;在测试函数中,计算了模型的准确率和损失值。
4. 在主函数中,设置了训练参数,包括训练轮数、批次大小和学习率等;创建了数据预处理器和数据加载器;创建了模型和优化器;最后进行了模型的训练和测试,并输出了相关指标。
阅读全文