解释代码 while ((buffer_len < lsb_space) and (index_file_data // 8 < len(data_file))): current_buffer += (data_file[index_file_data // 8] >> (index_file_data % 8)) << buffer_len bits_added = 8 - (index_file_data % 8) buffer_len += bits_added index_file_data += bits_added # 从缓冲区中检索下一组lsb空间位 current_data = current_buffer % (1 << lsb_space) current_buffer >>= lsb_space buffer_len -= lsb_space

时间: 2024-03-03 22:52:26 浏览: 20
这段代码是一个循环,它的作用是将一个二进制数据文件中的数据按照一定规则嵌入到另一个二进制文件中。具体来说,循环首先检查当前缓冲区中是否还有足够的空间可以存储要嵌入的数据,同时也检查数据文件中是否还有剩余的数据需要嵌入。如果条件都满足,就将数据文件中的一个字节中的数据按位插入到当前缓冲区中。然后,循环更新缓冲区中已用的位数、数据文件中已处理的位数,并检索下一组可以用于嵌入的lsb空间位。最后,循环将当前缓冲区中的数据取出,并根据lsb空间位数进行截断,得到要嵌入的数据。同时,循环将剩余的数据留在缓冲区中,以便下一次循环使用。
相关问题

while ((buffer_len < lsb_space) and (index_file_data // 8 < len(data_file))): current_buffer += (data_file[index_file_data // 8] >> (index_file_data % 8)) << buffer_len bits_added = 8 - (index_file_data % 8) buffer_len += bits_added index_file_data += bits_added

这段代码是一个while循环,它的作用是将数据文件中的数据按位填充到一个缓冲区中。具体来说,它首先判断当前缓冲区的长度是否小于lsb空间的长度,并且数据文件中的数据是否还没有全部填充到缓冲区中。如果满足这两个条件,就将数据文件中的数据按位填充到缓冲区中。填充的方法是:先取出数据文件中的一个字节,然后将它右移index_file_data % 8位,得到需要填充的数据。再将这个数据左移buffer_len位,将其填充到缓冲区的最后面。接着,更新缓冲区的长度,将index_file_data向前移动bits_added位,表示已经将这些数据填充到了缓冲区中。最后,继续循环,直到缓冲区的长度达到了lsb空间的长度,或者数据文件中的数据已经全部填充到了缓冲区中。

while (not status): # 用新的缓冲区数据填充缓冲区,并用数据文件填充index_file_data位的循环 while ((buffer_len < lsb_space) and (index_file_data // 8 < len(data_file))): current_buffer += (data_file[index_file_data // 8] >> (index_file_data % 8)) << buffer_len bits_added = 8 - (index_file_data % 8) buffer_len += bits_added index_file_data += bits_added # 从缓冲区中检索下一组lsb空间位 current_data = current_buffer % (1 << lsb_space) current_buffer >>= lsb_space buffer_len -= lsb_space # print (buffer_len) # print ("新的缓冲区的长度: " + str(len(sample_details))) while (index_audio_data < len(sample_details) and sample_details[index_audio_data] == min_masking_sample): new_audio_buffer.append(struct.pack( sample_quality[-1], sample_details[index_audio_data])) index_audio_data += 1 if (index_audio_data < len(sample_details)): current_sample_position = sample_details[index_audio_data] index_audio_data += 1 # print (len(index_audio_data)) absolute_value = 1 if (current_sample_position < 0): current_sample_position = - current_sample_position absolute_value = -1 new_sample = absolute_value * \ ((current_sample_position & masking) | current_data) new_audio_buffer.append(struct.pack( sample_quality[-1], new_sample)) if ((index_file_data // 8 >= len(data_file)) and (buffer_len <= 0)): status = True print(status) #把剩余的样本重新附加到新的音频缓冲区中,该缓冲区将被写入新的音频文件 while (index_audio_data < len(sample_details)): new_audio_buffer.append(struct.pack( sample_quality[-1], sample_details[index_audio_data])) index_audio_data += 1

这段代码是一个循环,它的作用是将一个数据文件中的数据嵌入到一个音频文件中,实现隐写术。其中包含了一些变量的赋值和比较,以及一些判断语句和循环语句。具体来说,它会将数据文件中的数据按位填充到一个缓冲区中,当缓冲区的长度达到一定值时,就从中取出一组lsb空间位,再将其嵌入到音频文件的样本中。最后,将剩余的样本重新附加到新的音频缓冲区中,该缓冲区将被写入新的音频文件。其中,sample_quality是一个字符串变量,表示采样的位数。

相关推荐

uint32 bluetooth_ch9141_read_buff (uint8 *buff, uint32 len) { uint32 data_len = len; fifo_read_buffer(&bluetooth_ch9141_fifo, buff, &data_len, FIFO_READ_AND_CLEAN); return data_len; }uint32 bluetooth_ch9141_send_buff (uint8 *buff, uint32 len) { uint16 time_count = 0; while(len > 30) { time_count = 0; while(BLUETOOTH_CH9141_RTS_PIN && time_count++ < BLUETOOTH_CH9141_TIMEOUT_COUNT) // 如果RTS为低电平,则继续发送数据 delay_ms(1); if(time_count >= BLUETOOTH_CH9141_TIMEOUT_COUNT) return len; // 模块忙,如果允许当前程序使用while等待 则可以使用后面注释的while等待语句替换本if语句 uart_putbuff(BLUETOOTH_CH9141_INDEX, buff, 30); buff += 30; // 地址偏移 len -= 30; // 数量 } time_count = 0; while(BLUETOOTH_CH9141_RTS_PIN && time_count++ < BLUETOOTH_CH9141_TIMEOUT_COUNT) // 如果RTS为低电平,则继续发送数据 delay_ms(1); if(time_count >= BLUETOOTH_CH9141_TIMEOUT_COUNT) return len; // 模块忙,如果允许当前程序使用while等待 则可以使用后面注释的while等待语句替换本if语句 uart_putbuff(BLUETOOTH_CH9141_INDEX, buff, (uint16)len); // 发送最后的数据 return 0; }uint8 bluetooth_ch9141_init (void) { wireless_type = WIRELESS_CH9141; // 本函数使用的波特率为115200 为蓝牙转串口模块的默认波特率 如需其他波特率请使用上位机修改模块参数 fifo_init(&bluetooth_ch9141_fifo, bluetooth_ch9141_buffer, BLUETOOTH_CH9141_BUFFER_SIZE); uart_init(BLUETOOTH_CH9141_INDEX, BLUETOOTH_CH9141_TX_PIN, BLUETOOTH_CH9141_RX_PIN, BLUETOOTH_CH9141_BUAD_RATE, BLUETOOTH_CH9141_TIMER); return 0; } void bluetooth_ch9141_uart_callback (void) { // 读取无线串口的数据 并且置位接收标志 bluetooth_ch9141_data = BLUETOOTH_CH9141_DATA_BUF; fifo_write_buffer(&bluetooth_ch9141_fifo, &bluetooth_ch9141_data, 1); // 存入 FIFO } static fifo_struct bluetooth_ch9141_fifo; static uint8 bluetooth_ch9141_buffer[BLUETOOTH_CH9141_BUFFER_SIZE]; // 数据存放数组 static uint8 bluetooth_ch9141_data;以以上代码为示例编写一个适合于HC-05的蓝牙代码

最新推荐

recommend-type

pthread_cond_wait() 用法深入分析

消费者线程在数据未准备好时等待条件变量,一旦收到信号,它会解锁 mutex 并检查数据是否已准备好,如果准备好,则进行消费并重置 `data_ready`。 总结来说,`pthread_cond_wait()` 是一个强大的工具,用于实现线程...
recommend-type

详细解析命令行的getopt_long()函数

while ((c = getopt_long(argc, argv, "a:b:cd", long_options, NULL)) != -1) { switch (c) { case 'a': printf("Option a with value '%s'\n", optarg); break; case 'c': printf("Option c\n"); break; ...
recommend-type

Android中执行java命令的方法及java代码执行并解析shell命令

while ((line = reader.readLine()) != null) { output.append(line).append('\n'); } reader.close(); return output.toString(); } catch (IOException e) { Log.e("TAG", "Error executing shell command...
recommend-type

Struts2_上传图片示例_图片上传.docx

while ((length = in.read(buffer)) != -1) { out.write(buffer, 0, length); } // 关闭流 in.close(); out.close(); } catch (Exception e) { // 处理异常 } // 返回结果,例如跳转到成功页面 return ...
recommend-type

Citrix_XenApp5

• Citrix provides a 96-hour initial grace period that will allow up to two users to connect while unable to connect to a License Server • Citrix XenApp client • the XenApp Plugin,the XenApp Web ...
recommend-type

基于Springboot的医院信管系统

"基于Springboot的医院信管系统是一个利用现代信息技术和网络技术改进医院信息管理的创新项目。在信息化时代,传统的管理方式已经难以满足高效和便捷的需求,医院信管系统的出现正是适应了这一趋势。系统采用Java语言和B/S架构,即浏览器/服务器模式,结合MySQL作为后端数据库,旨在提升医院信息管理的效率。 项目开发过程遵循了标准的软件开发流程,包括市场调研以了解需求,需求分析以明确系统功能,概要设计和详细设计阶段用于规划系统架构和模块设计,编码则是将设计转化为实际的代码实现。系统的核心功能模块包括首页展示、个人中心、用户管理、医生管理、科室管理、挂号管理、取消挂号管理、问诊记录管理、病房管理、药房管理和管理员管理等,涵盖了医院运营的各个环节。 医院信管系统的优势主要体现在:快速的信息检索,通过输入相关信息能迅速获取结果;大量信息存储且保证安全,相较于纸质文件,系统节省空间和人力资源;此外,其在线特性使得信息更新和共享更为便捷。开发这个系统对于医院来说,不仅提高了管理效率,还降低了成本,符合现代社会对数字化转型的需求。 本文详细阐述了医院信管系统的发展背景、技术选择和开发流程,以及关键组件如Java语言和MySQL数据库的应用。最后,通过功能测试、单元测试和性能测试验证了系统的有效性,结果显示系统功能完整,性能稳定。这个基于Springboot的医院信管系统是一个实用且先进的解决方案,为医院的信息管理带来了显著的提升。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

字符串转Float性能调优:优化Python字符串转Float性能的技巧和工具

![字符串转Float性能调优:优化Python字符串转Float性能的技巧和工具](https://pic1.zhimg.com/80/v2-3fea10875a3656144a598a13c97bb84c_1440w.webp) # 1. 字符串转 Float 性能调优概述 字符串转 Float 是一个常见的操作,在数据处理和科学计算中经常遇到。然而,对于大规模数据集或性能要求较高的应用,字符串转 Float 的效率至关重要。本章概述了字符串转 Float 性能调优的必要性,并介绍了优化方法的分类。 ### 1.1 性能调优的必要性 字符串转 Float 的性能问题主要体现在以下方面
recommend-type

Error: Cannot find module 'gulp-uglify

当你遇到 "Error: Cannot find module 'gulp-uglify'" 这个错误时,它通常意味着Node.js在尝试运行一个依赖了 `gulp-uglify` 模块的Gulp任务时,找不到这个模块。`gulp-uglify` 是一个Gulp插件,用于压缩JavaScript代码以减少文件大小。 解决这个问题的步骤一般包括: 1. **检查安装**:确保你已经全局安装了Gulp(`npm install -g gulp`),然后在你的项目目录下安装 `gulp-uglify`(`npm install --save-dev gulp-uglify`)。 2. **配置
recommend-type

基于Springboot的冬奥会科普平台

"冬奥会科普平台的开发旨在利用现代信息技术,如Java编程语言和MySQL数据库,构建一个高效、安全的信息管理系统,以改善传统科普方式的不足。该平台采用B/S架构,提供包括首页、个人中心、用户管理、项目类型管理、项目管理、视频管理、论坛和系统管理等功能,以提升冬奥会科普的检索速度、信息存储能力和安全性。通过需求分析、设计、编码和测试等步骤,确保了平台的稳定性和功能性。" 在这个基于Springboot的冬奥会科普平台项目中,我们关注以下几个关键知识点: 1. **Springboot框架**: Springboot是Java开发中流行的应用框架,它简化了创建独立的、生产级别的基于Spring的应用程序。Springboot的特点在于其自动配置和起步依赖,使得开发者能快速搭建应用程序,并减少常规配置工作。 2. **B/S架构**: 浏览器/服务器模式(B/S)是一种客户端-服务器架构,用户通过浏览器访问服务器端的应用程序,降低了客户端的维护成本,提高了系统的可访问性。 3. **Java编程语言**: Java是这个项目的主要开发语言,具有跨平台性、面向对象、健壮性等特点,适合开发大型、分布式系统。 4. **MySQL数据库**: MySQL是一个开源的关系型数据库管理系统,因其高效、稳定和易于使用而广泛应用于Web应用程序,为平台提供数据存储和查询服务。 5. **需求分析**: 开发前的市场调研和需求分析是项目成功的关键,它帮助确定平台的功能需求,如用户管理、项目管理等,以便满足不同用户群体的需求。 6. **数据库设计**: 数据库设计包括概念设计、逻辑设计和物理设计,涉及表结构、字段定义、索引设计等,以支持平台的高效数据操作。 7. **模块化设计**: 平台功能模块化有助于代码组织和复用,包括首页模块、个人中心模块、管理系统模块等,每个模块负责特定的功能。 8. **软件开发流程**: 遵循传统的软件生命周期模型,包括市场调研、需求分析、概要设计、详细设计、编码、测试和维护,确保项目的质量和可维护性。 9. **功能测试、单元测试和性能测试**: 在开发过程中,通过这些测试确保平台功能的正确性、模块的独立性和系统的性能,以达到预期的用户体验。 10. **微信小程序、安卓源码**: 虽然主要描述中没有详细说明,但考虑到标签包含这些内容,可能平台还提供了移动端支持,如微信小程序和安卓应用,以便用户通过移动设备访问和交互。 这个基于Springboot的冬奥会科普平台项目结合了现代信息技术和软件工程的最佳实践,旨在通过信息化手段提高科普效率,为用户提供便捷、高效的科普信息管理服务。