python编写的动物识别专家系统_基于Python的动物识别专家系统
时间: 2023-08-10 09:03:13 浏览: 133
动物图像识别系统-利用Python爬虫收集了近两万张十种动物的图像,包括调整图像大小、裁剪和规范化+源代码+文档说明+安装说明
Python编写的动物识别专家系统是一种基于人工智能技术的应用程序,它可以通过对动物特征进行分析和比对,快速准确的识别出动物的种类。
下面是一份基于Python的动物识别专家系统的简单实现:
```python
# 导入相关库
import numpy as np
import pandas as pd
# 读取数据集
data = pd.read_csv('animal.csv')
# 将数据集分为训练集和测试集
train_data = data.iloc[:80,:]
test_data = data.iloc[80:,:]
# 定义决策树节点类
class Node:
def __init__(self, feature=None, value=None, left=None, right=None, label=None):
self.feature = feature # 特征列索引
self.value = value # 划分阈值
self.left = left # 左子树
self.right = right # 右子树
self.label = label # 叶子节点类别标签
# 计算信息熵
def entropy(labels):
n = len(labels)
if n == 0:
return 0
counts = np.bincount(labels)
probs = counts[np.nonzero(counts)] / n
return -np.sum(probs * np.log2(probs))
# 计算信息增益
def information_gain(X, y, feature, threshold):
left_indices = X[:, feature] < threshold
right_indices = X[:, feature] >= threshold
left_labels = y[left_indices]
right_labels = y[right_indices]
if len(left_labels) == 0 or len(right_labels) == 0:
return 0
parent_entropy = entropy(y)
left_entropy = entropy(left_labels)
right_entropy = entropy(right_labels)
child_entropy = (len(left_labels) / len(y)) * left_entropy + \
(len(right_labels) / len(y)) * right_entropy
return parent_entropy - child_entropy
# ID3算法
def id3(X, y):
# 如果所有样本都属于同一类别,返回叶子节点
if len(np.unique(y)) == 1:
return Node(label=y[0])
# 如果没有可用特征,返回叶子节点
if X.shape[1] == 0:
return Node(label=np.bincount(y).argmax())
# 计算每个特征的信息增益
gains = [information_gain(X, y, feature, threshold)
for feature in range(X.shape[1])
for threshold in np.unique(X[:, feature])]
best_feature, best_threshold = np.unravel_index(np.argmax(gains), X.shape[:2])
# 如果信息增益为0,返回叶子节点
if gains[best_feature, best_threshold] == 0:
return Node(label=np.bincount(y).argmax())
# 构建决策树
left_indices = X[:, best_feature] < best_threshold
right_indices = X[:, best_feature] >= best_threshold
left_subtree = id3(X[left_indices], y[left_indices])
right_subtree = id3(X[right_indices], y[right_indices])
return Node(feature=best_feature, value=best_threshold, left=left_subtree, right=right_subtree)
# 预测
def predict(root, x):
if root.label is not None:
return root.label
subtree = root.left if x[root.feature] < root.value else root.right
return predict(subtree, x)
# 训练模型
X_train = train_data.iloc[:, :-1].values
y_train = train_data.iloc[:, -1].values
root = id3(X_train, y_train)
# 预测测试集
X_test = test_data.iloc[:, :-1].values
y_test = test_data.iloc[:, -1].values
y_pred = np.array([predict(root, x) for x in X_test])
# 输出准确率
accuracy = np.mean(y_pred == y_test)
print('Accuracy:', accuracy)
```
在该实现中,我们使用了ID3算法来构建决策树,并使用了信息熵和信息增益来进行特征选择。通过对训练集和测试集的预测,我们可以得到该动物识别专家系统的准确率。
阅读全文