torch.cuda.synchronize(device)

时间: 2023-09-15 15:14:52 浏览: 119
`torch.cuda.synchronize(device)` 是一个 PyTorch 中用于同步 CUDA 设备的函数。它的作用是等待指定 CUDA 设备上的所有流操作完成。具体使用方法如下: ```python import torch device = torch.device("cuda") # 选择 CUDA 设备 torch.cuda.synchronize(device) # 同步 CUDA 设备 ``` 在这段代码中,我们首先通过 `torch.device("cuda")` 选择了 CUDA 设备,然后使用 `torch.cuda.synchronize(device)` 来同步该设备上的操作。这可以确保之前的 CUDA 操作全部完成后再继续执行后续代码。 需要注意的是,`device` 参数是可选的,默认值为当前默认的 CUDA 设备。如果你想指定其他 CUDA 设备,可以将对应的设备对象传递给 `device` 参数。
相关问题

torch.cuda.synchronize()代码解释

在PyTorch中使用GPU进行深度学习训练时,我们常常需要在GPU计算完成之后同步CPU和GPU的状态,以保证计算结果的正确性。这时候,就需要使用到`torch.cuda.synchronize()`函数。 `torch.cuda.synchronize(device=None)`函数会阻止当前设备上的所有流的执行,直到所有先前的操作都已经完成。如果指定了设备,则只会阻止该设备上的所有流的执行。 具体来说,`torch.cuda.synchronize()`函数会将当前流中的所有操作都执行完毕,并且等待所有其他流中的操作也都执行完毕,然后才会返回。这个函数通常在以下情况下使用: - 当我们需要确保某个操作执行完毕之后再执行另外一个操作时; - 当我们需要统计GPU执行某个操作的时间时,需要用这个函数进行同步。 需要注意的是,`torch.cuda.synchronize()`函数是一个同步函数,会导致程序阻塞,因此在实际使用时需要慎重考虑。

torch.cuda.synchronize() RuntimeError: CUDA error: device-side assert triggered

CUDA error: device-side assert triggered是指在使用CUDA进行计算时,设备端触发了错误断言。这种错误一般是由于某个计算操作或函数调用出现了问题导致的。为了解决这个问题,可以尝试以下几个方法: 1. 确保CUDA是否可用:首先要确保CUDA已正确安装并可用。可以通过torch.cuda.is_available()函数来检查CUDA是否可用。 2. 检查GPU设备:确认代码是否将计算放在GPU上进行。可以使用.cuda()或者.todevice()方法将模型和数据转移到GPU上。 3. 检查CUDA加速设置:检查代码中的相关设置,如torch.backends.cudnn.enabled和torch.backends.cudnn.benchmark,确保它们被正确设置。 4. 设置CUDA_LAUNCH_BLOCKING:在运行代码时,可以考虑设置环境变量CUDA_LAUNCH_BLOCKING=1。这样可以确保CUDA错误在同步调用时被报告,从而更好地定位错误。 5. 调试代码:如果以上方法都无法解决问题,可以使用调试工具来进一步分析代码中出现的问题。可以使用PyTorch提供的各种调试工具来跟踪和诊断CUDA错误。
阅读全文

相关推荐

try: import thop except ImportError: thop = None logger = logging.getLogger(__name__) @contextmanager def torch_distributed_zero_first(local_rank: int): if local_rank not in [-1, 0]: torch.distributed.barrier() yield if local_rank == 0: torch.distributed.barrier() def init_torch_seeds(seed=0): torch.manual_seed(seed) if seed == 0: cudnn.benchmark, cudnn.deterministic = False, True else: cudnn.benchmark, cudnn.deterministic = True, False def select_device(device='', batch_size=None): s = f'YOLOv5 🚀 {git_describe() or date_modified()} torch {torch.__version__} ' cpu = device.lower() == 'cpu' if cpu: os.environ['CUDA_VISIBLE_DEVICES'] = '-1' elif device: # non-cpu device requested os.environ['CUDA_VISIBLE_DEVICES'] = device assert torch.cuda.is_available(), f'CUDA unavailable, invalid device {device} requested' cuda = not cpu and torch.cuda.is_available() if cuda: n = torch.cuda.device_count() if n > 1 and batch_size: # check that batch_size is compatible with device_count assert batch_size % n == 0, f'batch-size {batch_size} not multiple of GPU count {n}' space = ' ' * len(s) for i, d in enumerate(device.split(',') if device else range(n)): p = torch.cuda.get_device_properties(i) s += f"{'' if i == 0 else space}CUDA:{d} ({p.name}, {p.total_memory / 1024 ** 2}MB)\n" s += 'CPU\n' logger.info(s.encode().decode('ascii', 'ignore') if platform.system() == 'Windows' else s) # emoji-safe return torch.device('cuda:0' if cuda else 'cpu') def time_synchronized(): if torch.cuda.is_available(): torch.cuda.synchronize() return time.time()

torch.save(model.state_dict(), r'./saved_model/' + str(args.arch) + '_' + str(args.batch_size) + '_' + str(args.dataset) + '_' + str(args.epoch) + '.pth') # 计算GFLOPs flops = 0 for name, module in model.named_modules(): if isinstance(module, torch.nn.Conv2d): flops += module.weight.numel() * 2 * module.in_channels * module.out_channels * module.kernel_size[ 0] * module.kernel_size[1] / module.stride[0] / module.stride[1] elif isinstance(module, torch.nn.Linear): flops += module.weight.numel() * 2 * module.in_features start_event = torch.cuda.Event(enable_timing=True) end_event = torch.cuda.Event(enable_timing=True) start_event.record() with torch.no_grad(): output = UNet(args,3,1).to(device) end_event.record() torch.cuda.synchronize() elapsed_time_ms = start_event.elapsed_time(end_event) gflops = flops / (elapsed_time_ms * 10 ** 6) print("GFLOPs: {:.2f}".format(gflops)) return best_iou, aver_iou, aver_dice, aver_hd, aver_accuracy, aver_recall, aver_precision, aver_f1score, aver_memory, fps, parameters, gflops出现错误 best_iou,aver_iou,aver_dice,aver_hd, aver_accuracy, aver_recall, aver_precision, aver_f1score, aver_memory, FPS, parameters, gflops = val(model,best_iou,val_dataloader) File "D:/BaiduNetdiskDownload/0605_ghostv2unet _tunnelcrack/ghostunet++/UNET++/main.py", line 143, in val return best_iou, aver_iou, aver_dice, aver_hd, aver_accuracy, aver_recall, aver_precision, aver_f1score, aver_memory, fps, parameters, gflops UnboundLocalError: local variable 'gflops' referenced before assignment怎么修改

import numpy as np import tensorrt as trt import pycuda.driver as cuda import pycuda.autoinit import time import torch # 1. 确定batch size大小,与导出的trt模型保持一致 BATCH_SIZE = 32 # 2. 选择是否采用FP16精度,与导出的trt模型保持一致 USE_FP16 = True target_dtype = np.float16 if USE_FP16 else np.float32 # 3. 创建Runtime,加载TRT引擎 f = open("resnet_engine.trt", "rb") # 读取trt模型 runtime = trt.Runtime(trt.Logger(trt.Logger.WARNING)) # 创建一个Runtime(传入记录器Logger) engine = runtime.deserialize_cuda_engine(f.read()) # 从文件中加载trt引擎 context = engine.create_execution_context() # 创建context # 4. 分配input和output内存 input_batch = np.random.randn(BATCH_SIZE, 224, 224, 3).astype(target_dtype) output = np.empty([BATCH_SIZE, 1000], dtype = target_dtype) d_input = cuda.mem_alloc(1 * input_batch.nbytes) d_output = cuda.mem_alloc(1 * output.nbytes) bindings = [int(d_input), int(d_output)] stream = cuda.Stream() # 5. 创建predict函数 def predict(batch): # result gets copied into output # transfer input data to device cuda.memcpy_htod_async(d_input, batch, stream) # execute model context.execute_async_v2(bindings, stream.handle, None) # 此处采用异步推理。如果想要同步推理,需将execute_async_v2替换成execute_v2 # transfer predictions back cuda.memcpy_dtoh_async(output, d_output, stream) # syncronize threads stream.synchronize() return output # 6. 调用predict函数进行推理,并记录推理时间 def preprocess_input(input): # input_batch无法直接传给模型,还需要做一定的预处理 # 此处可以添加一些其它的预处理操作(如标准化、归一化等) result = torch.from_numpy(input).transpose(0,2).transpose(1,2) # 利用torch中的transpose,使(224,224,3)——>(3,224,224) return np.array(result, dtype=target_dtype) preprocessed_inputs = np.array([preprocess_input(input) for input in input_batch]) # (BATCH_SIZE,224,224,3)——>(BATCH_SIZE,3,224,224) print("Warming up...") pred = predict(preprocessed_inputs) print("Done warming up!") t0 = time.time() pred = predict(preprocessed_inputs) t = time.time() - t0 print("Prediction cost {:.4f}s".format(t)) 请将这部分代码,改成可以输入电脑摄像头视频的

最新推荐

recommend-type

基于Matlab极化天线和目标之间的信号传输建模 matlab代码.rar

1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
recommend-type

移动通信网络中集中式无线电接入网的数据处理需求与性能指标分析

内容概要:本文提出了一种新的分析框架,用于评估集中式无线电接入网(RAN)的数据处理需求。作者定义了若干性能指标,如计算失效概率、复杂度、增益、多样性和复杂度率之间的权衡。该模型基于块瑞利衰落、距离相关路径损耗和部分功率控制假设下进行仿真验证,证明了集中计算资源的优势。 适用人群:通信工程领域的研究人员、5G技术开发人员和无线网络优化专家。 使用场景及目标:①理解集中式RAN架构对网络性能的影响;②评估集中化数据处理资源在提高吞吐量方面的效益;③量化集中式RAN系统的数据处理复杂度和可靠性。 其他说明:文章通过对多种场景和参数设置的仿真研究,展示了集中式RAN系统相对于传统分布式系统的优越性,为未来移动网络的设计提供了理论支持和技术依据。
recommend-type

444.exe44444

444.exe44444
recommend-type

华为 ArkUI 框架的创新与生态探索.pdf

华为 ArkUI 框架的创新与生态探索.pdf
recommend-type

hufuman压缩算法,实现数据的压缩与解压缩

哈夫曼解压缩算法实现
recommend-type

平尾装配工作平台运输支撑系统设计与应用

资源摘要信息:"该压缩包文件名为‘行业分类-设备装置-用于平尾装配工作平台的运输支撑系统.zip’,虽然没有提供具体的标签信息,但通过文件标题可以推断出其内容涉及的是航空或者相关重工业领域内的设备装置。从标题来看,该文件集中讲述的是有关平尾装配工作平台的运输支撑系统,这是一种专门用于支撑和运输飞机平尾装配的特殊设备。 平尾,即水平尾翼,是飞机尾部的一个关键部件,它对于飞机的稳定性和控制性起到至关重要的作用。平尾的装配工作通常需要在一个特定的平台上进行,这个平台不仅要保证装配过程中平尾的稳定,还需要适应平尾的搬运和运输。因此,设计出一个合适的运输支撑系统对于提高装配效率和保障装配质量至关重要。 从‘用于平尾装配工作平台的运输支撑系统.pdf’这一文件名称可以推断,该PDF文档应该是详细介绍这种支撑系统的构造、工作原理、使用方法以及其在平尾装配工作中的应用。文档可能包括以下内容: 1. 支撑系统的设计理念:介绍支撑系统设计的基本出发点,如便于操作、稳定性高、强度大、适应性强等。可能涉及的工程学原理、材料学选择和整体结构布局等内容。 2. 结构组件介绍:详细介绍支撑系统的各个组成部分,包括支撑框架、稳定装置、传动机构、导向装置、固定装置等。对于每一个部件的功能、材料构成、制造工艺、耐腐蚀性以及与其他部件的连接方式等都会有详细的描述。 3. 工作原理和操作流程:解释运输支撑系统是如何在装配过程中起到支撑作用的,包括如何调整支撑点以适应不同重量和尺寸的平尾,以及如何进行运输和对接。操作流程部分可能会包含操作步骤、安全措施、维护保养等。 4. 应用案例分析:可能包含实际操作中遇到的问题和解决方案,或是对不同机型平尾装配过程的支撑系统应用案例的详细描述,以此展示系统的实用性和适应性。 5. 技术参数和性能指标:列出支撑系统的具体技术参数,如载重能力、尺寸规格、工作范围、可调节范围、耐用性和可靠性指标等,以供参考和评估。 6. 安全和维护指南:对于支撑系统的使用安全提供指导,包括操作安全、应急处理、日常维护、定期检查和故障排除等内容。 该支撑系统作为专门针对平尾装配而设计的设备,对于飞机制造企业来说,掌握其详细信息是提高生产效率和保障产品质量的重要一环。同时,这种支撑系统的设计和应用也体现了现代工业在专用设备制造方面追求高效、安全和精确的趋势。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB遗传算法探索:寻找随机性与确定性的平衡艺术

![MATLAB多种群遗传算法优化](https://img-blog.csdnimg.cn/39452a76c45b4193b4d88d1be16b01f1.png) # 1. 遗传算法的基本概念与起源 遗传算法(Genetic Algorithm, GA)是一种模拟自然选择和遗传学机制的搜索优化算法。起源于20世纪60年代末至70年代初,由John Holland及其学生和同事们在研究自适应系统时首次提出,其理论基础受到生物进化论的启发。遗传算法通过编码一个潜在解决方案的“基因”,构造初始种群,并通过选择、交叉(杂交)和变异等操作模拟生物进化过程,以迭代的方式不断优化和筛选出最适应环境的
recommend-type

如何在S7-200 SMART PLC中使用MB_Client指令实现Modbus TCP通信?请详细解释从连接建立到数据交换的完整步骤。

为了有效地掌握S7-200 SMART PLC中的MB_Client指令,以便实现Modbus TCP通信,建议参考《S7-200 SMART Modbus TCP教程:MB_Client指令与功能码详解》。本教程将引导您了解从连接建立到数据交换的整个过程,并详细解释每个步骤中的关键点。 参考资源链接:[S7-200 SMART Modbus TCP教程:MB_Client指令与功能码详解](https://wenku.csdn.net/doc/119yes2jcm?spm=1055.2569.3001.10343) 首先,确保您的S7-200 SMART CPU支持开放式用户通
recommend-type

MAX-MIN Ant System:用MATLAB解决旅行商问题

资源摘要信息:"Solve TSP by MMAS: Using MAX-MIN Ant System to solve Traveling Salesman Problem - matlab开发" 本资源为解决经典的旅行商问题(Traveling Salesman Problem, TSP)提供了一种基于蚁群算法(Ant Colony Optimization, ACO)的MAX-MIN蚁群系统(MAX-MIN Ant System, MMAS)的Matlab实现。旅行商问题是一个典型的优化问题,要求找到一条最短的路径,让旅行商访问每一个城市一次并返回起点。这个问题属于NP-hard问题,随着城市数量的增加,寻找最优解的难度急剧增加。 MAX-MIN Ant System是一种改进的蚁群优化算法,它在基本的蚁群算法的基础上,对信息素的更新规则进行了改进,以期避免过早收敛和局部最优的问题。MMAS算法通过限制信息素的上下界来确保算法的探索能力和避免过早收敛,它在某些情况下比经典的蚁群系统(Ant System, AS)和带有局部搜索的蚁群系统(Ant Colony System, ACS)更为有效。 在本Matlab实现中,用户可以通过调用ACO函数并传入一个TSP问题文件(例如"filename.tsp")来运行MMAS算法。该问题文件可以是任意的对称或非对称TSP实例,用户可以从特定的网站下载多种标准TSP问题实例,以供测试和研究使用。 使用此资源的用户需要注意,虽然该Matlab代码可以免费用于个人学习和研究目的,但若要用于商业用途,则需要联系作者获取相应的许可。作者的电子邮件地址为***。 此外,压缩包文件名为"MAX-MIN%20Ant%20System.zip",该压缩包包含Matlab代码文件和可能的示例数据文件。用户在使用之前需要将压缩包解压,并将文件放置在Matlab的适当工作目录中。 为了更好地理解和应用该资源,用户应当对蚁群优化算法有初步了解,尤其是对MAX-MIN蚁群系统的基本原理和运行机制有所掌握。此外,熟悉Matlab编程环境和拥有一定的编程经验将有助于用户根据个人需求修改和扩展算法。 在实际应用中,用户可以根据问题规模调整MMAS算法的参数,如蚂蚁数量、信息素蒸发率、信息素增量等,以获得最优的求解效果。此外,也可以结合其他启发式或元启发式算法,如遗传算法、模拟退火等,来进一步提高算法的性能。 总之,本资源为TSP问题的求解提供了一种有效的算法框架,且Matlab作为编程工具的易用性和强大的计算能力,使得该资源成为算法研究人员和工程技术人员的有力工具。通过本资源的应用,用户将能够深入探索并实现蚁群优化算法在实际问题中的应用,为解决复杂的优化问题提供一种新的思路和方法。