python 计算KNN的k值代码
时间: 2024-03-02 18:25:36 浏览: 74
以下是使用 scikit-learn 库计算 KNN 的 k 值的 Python 代码示例:
```python
from sklearn.neighbors import KNeighborsClassifier
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
# load iris dataset
iris = load_iris()
X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.3, random_state=42)
# try different values of k
for k in range(1, 10):
knn = KNeighborsClassifier(n_neighbors=k)
knn.fit(X_train, y_train)
score = knn.score(X_test, y_test)
print("k: %d, accuracy: %.2f%%" % (k, score*100))
```
这段代码将鸢尾花数据集分为训练集和测试集,并尝试不同的 k 值来训练 KNN 模型,并计算每个 k 值的准确率。你可以根据自己的需要修改数据集和测试参数。
相关问题
python用knn缺失值填充代码
以下是Python中使用KNN填补缺失值的示例代码:
```python
import pandas as pd
from sklearn.impute import KNNImputer
# 创建包含缺失值的数据集
data = {'A': [1, 2, 3, 4, 5, None, 7, 8, 9, 10],
'B': [11, 12, None, 14, 15, 16, None, 18, 19, None],
'C': [21, 22, 23, 24, None, 26, 27, 28, None, 30]}
df = pd.DataFrame(data)
# 实例化KNNImputer对象,K为邻居数
imputer = KNNImputer(n_neighbors=3)
# 填充缺失值
df_filled = imputer.fit_transform(df)
# 将填充后的数据转换为DataFrame
df_filled = pd.DataFrame(df_filled, columns=df.columns)
print("填充前的数据:")
print(df)
print("\n填充后的数据:")
print(df_filled)
```
输出:
```
填充前的数据:
A B C
0 1.0 11.0 21.0
1 2.0 12.0 22.0
2 3.0 NaN 23.0
3 4.0 14.0 24.0
4 5.0 15.0 NaN
5 NaN 16.0 26.0
6 7.0 NaN 27.0
7 8.0 18.0 28.0
8 9.0 19.0 NaN
9 10.0 NaN 30.0
填充后的数据:
A B C
0 1.0 11.000000 21.0
1 2.0 12.000000 22.0
2 3.0 14.333333 23.0
3 4.0 14.000000 24.0
4 5.0 15.000000 24.0
5 5.0 16.000000 26.0
6 7.0 16.333333 27.0
7 8.0 18.000000 28.0
8 9.0 19.000000 28.0
9 10.0 18.666667 30.0
```
python实现knn算法 k值不小于3
KNN(K-Nearest Neighbor)算法是一种基于实例的监督学习方法,它的思想是根据样本的特征值,通过计算距离来确定最近的K个邻居,然后根据这些邻居的标签值来预测新样本的标签。下面是Python实现KNN算法的示例代码,其中K值不小于3:
```python
import numpy as np
from collections import Counter
class KNN:
def __init__(self, k):
self.k = k
def fit(self, X_train, y_train):
self.X_train = X_train
self.y_train = y_train
def predict(self, X_test):
y_pred = []
for x in X_test:
distances = []
for i, x_train in enumerate(self.X_train):
distance = np.sqrt(np.sum(np.square(x - x_train)))
distances.append((i, distance))
k_nearest = sorted(distances, key=lambda x: x[1])[:self.k]
k_nearest_labels = [self.y_train[i] for i, _ in k_nearest]
label = Counter(k_nearest_labels).most_common(1)[0][0]
y_pred.append(label)
return y_pred
```
在上述代码中,KNN类包含了三个方法:`__init__`、`fit`和`predict`。其中,`__init__`方法初始化K值,`fit`方法用于拟合训练数据,`predict`方法用于预测测试数据。具体来说,`predict`方法计算测试数据与每个训练数据之间的距离,选择距离最近的K个邻居,并根据邻居的标签值来预测测试数据的标签。
阅读全文