img_path_list = [os.path.join(imgs_root, i) for i in os.listdir(imgs_root) if i.endswith(".jpg")]
时间: 2024-05-28 21:12:44 浏览: 25
这段代码是用来获取文件夹中所有以 ".jpg" 结尾的图片文件的路径,并将它们存储在一个列表中。其中,imgs_root 是文件夹的路径,os.listdir(imgs_root) 返回该文件夹中所有文件和文件夹的名称列表,os.path.join() 函数用于将文件夹路径和文件名拼接成完整的文件路径。最后,列表推导式过滤出所有以 ".jpg" 结尾的文件名,生成最终的图片路径列表。
相关问题
import os import json import torch from PIL import Image from torchvision import transforms from model import resnet34 def main(): device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") data_transform = transforms.Compose( [transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]) # load image # 指向需要遍历预测的图像文件夹 imgs_root = "../dataset/val" assert os.path.exists(imgs_root), f"file: '{imgs_root}' dose not exist." # 读取指定文件夹下所有jpg图像路径 img_path_list = [os.path.join(imgs_root, i) for i in os.listdir(imgs_root) if i.endswith(".jpg")] # read class_indict json_path = './class_indices.json' assert os.path.exists(json_path), f"file: '{json_path}' dose not exist." json_file = open(json_path, "r") class_indict = json.load(json_file) # create model model = resnet34(num_classes=16).to(device) # load model weights weights_path = "./newresNet34.pth" assert os.path.exists(weights_path), f"file: '{weights_path}' dose not exist." model.load_state_dict(torch.load(weights_path, map_location=device)) # prediction model.eval() batch_size = 8 # 每次预测时将多少张图片打包成一个batch with torch.no_grad(): for ids in range(0, len(img_path_list) // batch_size): img_list = [] for img_path in img_path_list[ids * batch_size: (ids + 1) * batch_size]: assert os.path.exists(img_path), f"file: '{img_path}' dose not exist." img = Image.open(img_path) img = data_transform(img) img_list.append(img) # batch img # 将img_list列表中的所有图像打包成一个batch batch_img = torch.stack(img_list, dim=0) # predict class output = model(batch_img.to(device)).cpu() predict = torch.softmax(output, dim=1) probs, classes = torch.max(predict, dim=1) for idx, (pro, cla) in enumerate(zip(probs, classes)): print("image: {} class: {} prob: {:.3}".format(img_path_list[ids * batch_size + idx], class_indict[str(cla.numpy())], pro.numpy())) if __name__ == '__main__': main()
这段代码实现了导入必要的包和模块,包括操作系统、JSON、PyTorch、PIL及其转换模块、还有定义的resnet34模型。在主函数中,首先根据可用GPU情况使用cuda或cpu作为设备,然后定义数据的处理流程,包括缩放、剪裁、转换为Tensor并进行标准化。
基于pytorch的arcface的lfw_dataset = LFW(lfw_path, transform)中LFW的具体函数代码
LFW的函数代码如下:
```python
class LFW(Dataset):
def __init__(self, root, transform=None, pairs_path=None, download=False):
self.root = root
self.transform = transform
self.pairs_path = pairs_path
self.download = download
if download:
self.download_lfw()
if not self._check_integrity():
raise RuntimeError('Dataset not found or corrupted.' +
' You can use download=True to download it')
self.imgs, self.pairs = self._load_metadata()
def __getitem__(self, index):
path1, path2, label = self.pairs[index]
img1 = self._load_image(os.path.join(self.root, path1))
img2 = self._load_image(os.path.join(self.root, path2))
if self.transform is not None:
img1 = self.transform(img1)
img2 = self.transform(img2)
return img1, img2, label
def __len__(self):
return len(self.pairs)
def _load_metadata(self):
pairs = []
if self.pairs_path is None:
pairs = self._generate_pairs()
else:
with open(self.pairs_path, 'r') as f:
for line in f.readlines()[1:]:
pair = line.strip().split()
if len(pair) == 3:
path1 = os.path.join(pair[0], pair[0] + '_' + '%04d' % int(pair[1]) + '.jpg')
path2 = os.path.join(pair[0], pair[0] + '_' + '%04d' % int(pair[2]) + '.jpg')
label = 1
elif len(pair) == 4:
path1 = os.path.join(pair[0], pair[0] + '_' + '%04d' % int(pair[1]) + '.jpg')
path2 = os.path.join(pair[2], pair[2] + '_' + '%04d' % int(pair[3]) + '.jpg')
label = -1
else:
raise ValueError('Pair {} do not have length of 3 or 4'.format(pair))
pairs.append((path1, path2, label))
root = os.path.expanduser(self.root)
imgs = {os.path.join(root, img): None for img in os.listdir(root)}
return imgs, pairs
def _generate_pairs(self):
root = os.path.expanduser(self.root)
if not os.path.exists(os.path.join(root, 'lfw_funneled')):
print('Please download the Funneled version of the LFW dataset from the official website'
'and place it in: ' + root)
exit(0)
imgs = glob.glob(os.path.join(root, 'lfw_funneled', '**/*.jpg'))
imgs = {os.path.relpath(x, root): None for x in imgs}
pairs = []
people = set()
for img in imgs:
people.add('_'.join(img.split('_')[:-1]))
people = list(people)
n = len(people)
for i, name in enumerate(people):
same = [(name, x) for x in people[i+1:]]
for s in same:
pairs.append((s[0], s[1], 1))
for i, name in enumerate(people):
diff = [name, random.choice(list(set(people) - set([name])))]
pairs.append((diff[0], diff[1], -1))
return pairs
def _load_image(self, path):
if self.imgs[path] is None:
self.imgs[path] = pil_loader(path)
return self.imgs[path]
def _check_integrity(self):
root = os.path.expanduser(self.root)
if not os.path.isdir(root):
return False
return True
def download_lfw(self):
if self._check_integrity():
print('Files already downloaded and verified')
return
download_and_extract_archive(LFW_URL, self.root, filename=LFW_FILENAME, md5=LFW_MD5)
```
其中,该函数接受四个参数:`root`表示LFW数据集的根目录,`transform`表示数据预处理函数,`pairs_path`表示pairs.txt文件的路径,`download`表示是否自动下载LFW数据集。
该函数主要实现了以下功能:
- 加载LFW数据集的元数据,包括人脸图像路径、同/异类标签等信息;
- 加载LFW数据集的人脸图像;
- 对人脸图像进行预处理,如裁剪、归一化等;
- 按照pairs.txt文件中的信息,计算出每对人脸图像的同/异类标签;
- 返回每对人脸图像的数据和标签。
阅读全文