matlab逐次超松驰迭代法(SOR)
时间: 2023-08-23 20:49:32 浏览: 217
逐次超松驰迭代法(Successive Over-Relaxation, SOR)是一种求解线性方程组的迭代方法,它是基于高斯-赛德尔迭代法的改进。相比于高斯-赛德尔迭代法,SOR方法引入了一个松弛因子(w),可以加速迭代的收敛。
SOR方法的迭代公式为:
$x_i^{(k+1)}=(1-w)x_i^{(k)}+\frac{w}{a_{ii}}(b_i-\sum\limits_{j=1}^{i-1}a_{ij}x_j^{(k+1)}-\sum\limits_{j=i+1}^na_{ij}x_j^{(k)})$
其中,$x_i^{(k+1)}$表示第k+1次迭代后第i个未知量的解,$a_{ij}$为系数矩阵的元素,$b_i$为右端向量的第i个分量。
SOR方法的收敛条件为:系数矩阵必须是对称正定矩阵,松弛因子w的取值范围为0<w<2。
在MATLAB中,可以使用sor函数求解线性方程组,其语法为:
[x, flag, relres, iter] = sor(A, b, w, maxit, tol)
其中,A为系数矩阵,b为右端向量,w为松弛因子,maxit为最大迭代次数,tol为收敛精度。函数的输出参数x为方程组的解,flag表示是否收敛,relres为相对残差,iter为迭代次数。
相关问题
用matlab编写逐次超松弛迭代法SOR的代码
以下是一个简单的 Matlab 逐次超松弛迭代法 (SOR) 的实现:
```matlab
function [x, iter] = sor(A, b, x0, omega, tol, maxiter)
% SOR (逐次超松弛法) 求解线性方程组 Ax = b
% A:系数矩阵,b:常数矩阵,x0:迭代初值,omega:松弛因子,tol:容差,maxiter:最大迭代次数
% x:方程组的解,iter:实际迭代次数
n = length(b);
x = x0;
iter = 0;
while iter < maxiter
x_old = x;
for i = 1:n
sigma = 0;
for j = 1:n
if j ~= i
sigma = sigma + A(i, j) * x(j);
end
end
x(i) = (1 - omega) * x_old(i) + omega * (b(i) - sigma) / A(i, i);
end
iter = iter + 1;
if norm(x - x_old) < tol
break;
end
end
end
```
其中,A、b、x0、omega、tol 和 maxiter 分别代表系数矩阵、常数矩阵、迭代初值、松弛因子、容差和最大迭代次数。函数返回方程组的解 x 和实际迭代次数 iter。
matlab逐次超松驰迭代法(SOR)的程序
下面是MATLAB实现逐次超松驰迭代法(SOR)的程序:
```
function [x, flag, relres, iter] = sor(A, b, w, maxit, tol)
% 判断输入参数是否合法
if nargin < 5
tol = 1e-6;
end
if nargin < 4
maxit = 1000;
end
if nargin < 3
w = 1.2;
end
% 初始化迭代向量
n = length(b);
x = zeros(n, 1);
% 开始迭代
for iter = 1 : maxit
% 逐次更新每个未知量的解
for i = 1 : n
s = 0;
for j = 1 : n
if j ~= i
s = s + A(i, j) * x(j);
end
end
x(i) = (1 - w) * x(i) + w / A(i, i) * (b(i) - s);
end
% 计算当前迭代的残差和相对残差
r = b - A * x;
relres = norm(r) / norm(b);
% 判断是否达到收敛条件
if relres < tol
flag = 0;
return;
end
end
% 达到最大迭代次数仍未收敛
flag = 1;
```
该函数的输入参数为系数矩阵A、右端向量b、松弛因子w、最大迭代次数maxit、收敛精度tol。输出参数为方程组的解x、是否收敛的标志flag、相对残差relres和迭代次数iter。在函数中,我们先判断输入参数是否合法,然后初始化迭代向量x,开始迭代。在每一次迭代中,我们逐次更新每个未知量的解,然后计算当前迭代的残差和相对残差,判断是否达到收敛条件。如果达到收敛条件,则返回收敛的标志flag等信息;否则,继续迭代。最后,如果达到最大迭代次数仍未收敛,则返回未收敛的标志flag。
阅读全文
相关推荐













