关联分析python牛奶面包_Python中的Apriori关联算法-市场购物篮分析
时间: 2024-02-28 18:57:35 浏览: 152
好的,关联分析是一种在大规模数据集中寻找有趣关系的技术。在市场购物篮分析中,我们需要找到顾客购买的商品之间的关系,以便更好地进行商品推荐和销售策略制定。Apriori算法是一种常见的关联分析算法,它可以用来发现频繁项集和关联规则。在Python中,我们可以使用mlxtend库中的apriori函数来实现这个算法。以下是一个使用Apriori算法进行关联分析的示例代码,以分析牛奶和面包之间的关系:
```python
from mlxtend.frequent_patterns import apriori
from mlxtend.frequent_patterns import association_rules
import pandas as pd
# 导入数据集
data = pd.read_csv('shopping_basket.csv', header=None)
# 将数据集转换成适合进行关联分析的格式
def encode_units(x):
if x <= 0:
return 0
if x >= 1:
return 1
data = data.applymap(encode_units)
# 使用Apriori算法找出频繁项集
frequent_itemsets = apriori(data, min_support=0.05, use_colnames=True)
# 使用关联规则生成函数找出关联规则
rules = association_rules(frequent_itemsets, metric="lift", min_threshold=1)
# 输出结果
print(rules)
```
在这个示例中,我们将购物篮数据集导入为一个Pandas DataFrame,然后将其转换为适合进行关联分析的格式。接着,我们使用Apriori算法找出频繁项集,然后使用关联规则生成函数找出关联规则。最后,我们输出结果以查看牛奶和面包之间的关联规则。
阅读全文
相关推荐


















