vgg19加入注意力机制怎么做
时间: 2023-06-23 15:08:07 浏览: 121
基于EfficientNet加入注意力机制matlab+Python仿真源码+数据(课程设计).zip
5星 · 资源好评率100%
将注意力机制应用于VGG19模型可以提高模型的性能。在VGG19中,我们可以添加注意力模块来增强网络的表征能力,以下是一个简单的实现过程:
1. 定义注意力模块。注意力模块可以通过一些线性变换和激活函数来计算注意力权重。下面是一个简单的注意力模块示例:
```python
class AttentionModule(nn.Module):
def __init__(self, channels):
super(AttentionModule, self).__init__()
self.attention = nn.Sequential(
nn.Linear(channels, channels),
nn.ReLU(inplace=True),
nn.Linear(channels, channels),
nn.Sigmoid()
)
def forward(self, x):
attention_weights = self.attention(x)
return x * attention_weights
```
2. 在VGG19的每个卷积块后面添加注意力模块。例如,在VGG19中,我们可以在每个卷积块的最后一个卷积层之后添加注意力模块:
```python
class VGG19(nn.Module):
def __init__(self):
super(VGG19, self).__init__()
self.features = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(64, 64, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
AttentionModule(64), # 添加注意力模块
nn.Conv2d(64, 128, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(128, 128, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
AttentionModule(128), # 添加注意力模块
nn.Conv2d(128, 256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(256, 256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(256, 256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(256, 256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
AttentionModule(256), # 添加注意力模块
nn.Conv2d(256, 512, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
AttentionModule(512), # 添加注意力模块
nn.Conv2d(512, 512, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
AttentionModule(512), # 添加注意力模块
)
self.avgpool = nn.AdaptiveAvgPool2d((7, 7))
self.classifier = nn.Sequential(
nn.Linear(512 * 7 * 7, 4096),
nn.ReLU(inplace=True),
nn.Dropout(),
nn.Linear(4096, 4096),
nn.ReLU(inplace=True),
nn.Dropout(),
nn.Linear(4096, 1000),
)
def forward(self, x):
x = self.features(x)
x = self.avgpool(x)
x = torch.flatten(x, 1)
x = self.classifier(x)
return x
```
通过添加注意力模块,我们可以提高VGG19模型的表征能力和性能。
阅读全文