帮我用matlab编写CNN-LSTM-Attention模型
时间: 2024-01-14 17:02:14 浏览: 160
基于卷积神经网络-长短期记忆网络结合注意力机制(CNN-LSTM-Attention)回归预测,多变量输入模型 matlab代码
好的,下面是一个使用Matlab实现CNN-LSTM-Attention模型的示例代码。在这个示例中,我们将使用MNIST手写数字识别数据集来演示模型的实现。
首先,我们需要加载并预处理数据集:
```matlab
[trainImages, trainLabels, testImages, testLabels] = helperMNISTData.load();
% 将图像调整为相同的大小
imageSize = [28 28 1];
trainImages = imresize(trainImages, imageSize);
testImages = imresize(testImages, imageSize);
% 将标签转换为分类向量
numClasses = numel(unique(trainLabels));
trainLabels = categorical(trainLabels);
testLabels = categorical(testLabels);
% 创建ImageDatastore对象
trainData = imageDatastore(trainImages, trainLabels);
testData = imageDatastore(testImages, testLabels);
```
然后,我们定义CNN模型:
```matlab
% 创建卷积神经网络模型
layers = [
imageInputLayer(imageSize)
convolution2dLayer(3,16,'Padding','same')
batchNormalizationLayer
reluLayer
maxPooling2dLayer(2,'Stride',2)
convolution2dLayer(3,32,'Padding','same')
batchNormalizationLayer
reluLayer
maxPooling2dLayer(2,'Stride',2)
convolution2dLayer(3,64,'Padding','same')
batchNormalizationLayer
reluLayer
maxPooling2dLayer(2,'Stride',2)
convolution2dLayer(3,128,'Padding','same')
batchNormalizationLayer
reluLayer
maxPooling2dLayer(2,'Stride',2)
];
% 连接卷积神经网络图层
lgraph = layerGraph(layers);
```
接下来,我们定义LSTM模型:
```matlab
% 创建长短期记忆网络模型
numHiddenUnits = 64;
lstm = lstmLayer(numHiddenUnits,'OutputMode','last');
% 添加LSTM层到图层图中
lstmLayer = sequenceInputLayer(numHiddenUnits);
lstmLayer.Name = 'lstmLayer';
lgraph = addLayers(lgraph,lstmLayer);
lgraph = connectLayers(lgraph,'pooling2dLayer','lstmLayer');
lgraph = addLayers(lgraph,lstm);
lgraph = connectLayers(lgraph,'lstmLayer','lstm');
```
最后,我们定义Attention模型:
```matlab
% 创建注意力模型
attention = attentionLayer('AttentionWeightLearnRateFactor',0.2);
% 添加注意力层到图层图中
attentionLayer = sequenceInputLayer(numHiddenUnits);
attentionLayer.Name = 'attentionLayer';
lgraph = addLayers(lgraph,attentionLayer);
lgraph = connectLayers(lgraph,'lstm', 'attentionLayer');
lgraph = addLayers(lgraph,attention);
lgraph = connectLayers(lgraph,'attentionLayer','attention');
lgraph = connectLayers(lgraph,'lstm','attention','SequenceOutput',true);
```
现在,我们可以训练模型并进行测试:
```matlab
% 设置训练参数
miniBatchSize = 128;
numEpochs = 10;
learnRate = 1e-3;
gradientDecayFactor = 0.9;
squaredGradientDecayFactor = 0.999;
l2RegularizationFactor = 1e-5;
options = trainingOptions('adam', ...
'MiniBatchSize',miniBatchSize, ...
'MaxEpochs',numEpochs, ...
'InitialLearnRate',learnRate, ...
'GradientDecayFactor',gradientDecayFactor, ...
'SquaredGradientDecayFactor',squaredGradientDecayFactor, ...
'L2Regularization',l2RegularizationFactor, ...
'Shuffle','every-epoch', ...
'ValidationData',testData, ...
'ValidationFrequency',30, ...
'Plots','training-progress', ...
'Verbose',false);
% 训练模型
net = trainNetwork(trainData,lgraph,options);
% 测试模型
predictions = classify(net,testData);
accuracy = sum(predictions == testLabels)/numel(testLabels);
fprintf("Accuracy: %.2f%%\n", accuracy*100);
```
这就是一个使用Matlab实现CNN-LSTM-Attention模型的简单示例。您可以根据您的需求进行修改和扩展,例如更改模型架构、调整训练参数等。请注意,实现复杂的深度学习模型需要大量的计算资源和时间。
阅读全文