在生成对抗网络特征统计混合正则化的模型中,损失函数包括两部分:对抗性损失和FSMR正则化损失的模型代码
时间: 2024-05-08 11:20:24 浏览: 157
神经网络-几种损失函数
下面是一个基于PyTorch框架的生成对抗网络特征统计混合正则化的模型的代码,其中包括了对抗性损失和FSMR正则化损失的损失函数:
```python
import torch
import torch.nn as nn
from torch.autograd import Variable
class Generator(nn.Module):
def __init__(self, input_dim=100, output_dim=1, input_size=32):
super(Generator, self).__init__()
self.input_dim = input_dim
self.output_dim = output_dim
self.input_size = input_size
self.fc1 = nn.Linear(self.input_dim, 256)
self.fc2 = nn.Linear(256, 512)
self.fc3 = nn.Linear(512, 1024)
self.fc4 = nn.Linear(1024, self.output_dim*self.input_size*self.input_size)
self.bn1 = nn.BatchNorm1d(256)
self.bn2 = nn.BatchNorm1d(512)
self.bn3 = nn.BatchNorm1d(1024)
self.bn4 = nn.BatchNorm2d(self.output_dim)
def forward(self, x):
x = nn.LeakyReLU(0.2)(self.bn1(self.fc1(x)))
x = nn.LeakyReLU(0.2)(self.bn2(self.fc2(x)))
x = nn.LeakyReLU(0.2)(self.bn3(self.fc3(x)))
x = self.bn4(self.fc4(x))
x = x.view(-1, self.output_dim, self.input_size, self.input_size)
x = nn.Sigmoid()(x)
return x
class Discriminator(nn.Module):
def __init__(self, input_dim=1, output_dim=1, input_size=32):
super(Discriminator, self).__init__()
self.input_dim = input_dim
self.output_dim = output_dim
self.input_size = input_size
self.conv1 = nn.Conv2d(self.input_dim, 64, 4, 2, 1)
self.conv2 = nn.Conv2d(64, 128, 4, 2, 1)
self.conv3 = nn.Conv2d(128, 256, 4, 2, 1)
self.conv4 = nn.Conv2d(256, 512, 4, 2, 1)
self.conv5 = nn.Conv2d(512, self.output_dim, 4, 1, 0)
self.bn1 = nn.BatchNorm2d(64)
self.bn2 = nn.BatchNorm2d(128)
self.bn3 = nn.BatchNorm2d(256)
self.bn4 = nn.BatchNorm2d(512)
def forward(self, x):
x = nn.LeakyReLU(0.2)(self.bn1(self.conv1(x)))
x = nn.LeakyReLU(0.2)(self.bn2(self.conv2(x)))
x = nn.LeakyReLU(0.2)(self.bn3(self.conv3(x)))
x = nn.LeakyReLU(0.2)(self.bn4(self.conv4(x)))
x = self.conv5(x)
x = x.view(-1, self.output_dim)
x = nn.Sigmoid()(x)
return x
class GAN(nn.Module):
def __init__(self, input_dim=100, output_dim=1, input_size=32):
super(GAN, self).__init__()
self.input_dim = input_dim
self.output_dim = output_dim
self.input_size = input_size
self.generator = Generator(self.input_dim, self.output_dim, self.input_size)
self.discriminator = Discriminator(self.output_dim, self.output_dim, self.input_size)
def forward(self, x):
return self.generator(x)
def backward_D(self, real_images, fake_images, optimizer_D):
optimizer_D.zero_grad()
# real images
real_logits = self.discriminator(real_images)
real_labels = Variable(torch.ones(real_logits.size())).cuda()
real_loss = nn.BCELoss()(real_logits, real_labels)
# fake images
fake_logits = self.discriminator(fake_images.detach())
fake_labels = Variable(torch.zeros(fake_logits.size())).cuda()
fake_loss = nn.BCELoss()(fake_logits, fake_labels)
# total loss
d_loss = real_loss + fake_loss
d_loss.backward()
optimizer_D.step()
return d_loss
def backward_G(self, fake_images, optimizer_G, feature_statistic_fn, lambda_f):
optimizer_G.zero_grad()
# adversarial loss
fake_logits = self.discriminator(fake_images)
real_labels = Variable(torch.ones(fake_logits.size())).cuda()
adversarial_loss = nn.BCELoss()(fake_logits, real_labels)
# feature statistic loss
feature_statistic_loss = feature_statistic_fn(fake_images)
# total loss
g_loss = adversarial_loss + lambda_f * feature_statistic_loss
g_loss.backward()
optimizer_G.step()
return g_loss
```
其中,`Generator`是生成器模型,`Discriminator`是判别器模型,`GAN`是整个生成对抗网络模型。在`backward_D`函数中,计算了对抗性损失;在`backward_G`函数中,计算了对抗性损失和FSMR正则化损失。在`backward_G`函数中,`feature_statistic_fn`是用来计算特征统计值的函数,`lambda_f`是FSMR正则化超参数。
阅读全文