基于pytorch卷积神经网络 自适应调整学习率的实现 代码
时间: 2023-10-16 18:06:16 浏览: 144
以下是基于PyTorch实现自适应调整学习率的代码:
``` python
import torch.optim as optim
from torch.optim.lr_scheduler import ReduceLROnPlateau
# 定义模型和优化器
model = MyModel()
optimizer = optim.Adam(model.parameters(), lr=0.001)
# 定义学习率调度器
scheduler = ReduceLROnPlateau(optimizer, 'min', patience=3, factor=0.5, verbose=True)
# 训练模型
for epoch in range(num_epochs):
train_loss = 0.0
for i, data in enumerate(train_loader, 0):
inputs, labels = data
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
train_loss += loss.item()
train_loss /= len(train_loader)
# 调整学习率
val_loss = 0.0
with torch.no_grad():
for val_data in val_loader:
val_inputs, val_labels = val_data
val_outputs = model(val_inputs)
val_loss += criterion(val_outputs, val_labels).item()
val_loss /= len(val_loader)
scheduler.step(val_loss)
print('Epoch [%d/%d], Train Loss: %.4f, Val Loss: %.4f' % (epoch+1, num_epochs, train_loss, val_loss))
```
在上面的代码中,我们使用了PyTorch自带的`ReduceLROnPlateau`学习率调度器,它会在验证集上监测指定的指标(这里是验证集的平均损失),当验证集指标连续若干个epoch不再下降时,就会将学习率降低一定比例(这里是0.5)。`patience`参数指定了等待多少个epoch才开始调整学习率,`verbose`参数指定是否输出详细信息。
阅读全文
相关推荐
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![docx](https://img-home.csdnimg.cn/images/20241231044901.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)