python lgb代码 使用numpy
时间: 2023-11-12 19:33:34 浏览: 123
import numpy as np
import lightgbm as lgb
# 准备训练数据和标签
X_train = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
y_train = np.array([0, 1, 0])
# 准备测试数据和标签
X_test = np.array([[2, 3, 4], [5, 6, 7]])
y_test = np.array([1, 0])
# 将数据转换为lgb特定的数据格式
train_data = lgb.Dataset(X_train, label=y_train)
test_data = lgb.Dataset(X_test, label=y_test)
# 定义模型参数
params = {
'boosting_type': 'gbdt',
'objective': 'binary',
'metric': 'binary_logloss',
'num_leaves': 31,
'learning_rate': 0.05,
'feature_fraction': 0.9
}
# 训练模型
num_round = 100
bst = lgb.train(params, train_data, num_round, valid_sets=[test_data])
# 预测
y_pred = bst.predict(X_test)
# 输出预测结果
print(y_pred)
相关问题
python lgb stacking代码
很抱歉,作为AI语言模型,我不具备编写代码的能力。但是,以下是一个LGBMRegressor模型的Stacking实现的代码示例,供参考:
```python
import numpy as np
import pandas as pd
from sklearn.model_selection import KFold
from sklearn.metrics import mean_squared_error
from lightgbm import LGBMRegressor
# Load train and test datasets
train_df = pd.read_csv('train.csv')
test_df = pd.read_csv('test.csv')
# Define target variable and features
target = 'target'
features = [col for col in train_df.columns if col not in [target]]
# Initialize parameters for LGBMRegressor model
lgb_params = {
'objective': 'regression',
'boosting_type': 'gbdt',
'metric': 'rmse',
'num_leaves': 31,
'learning_rate': 0.05,
'feature_fraction': 0.9,
'bagging_fraction': 0.8,
'bagging_freq': 5,
'verbose': -1
}
# Define number of folds for cross-validation
n_folds = 5
# Initialize empty array to store predictions
train_preds = np.zeros(train_df.shape[0])
test_preds = np.zeros(test_df.shape[0])
# Initialize KFold cross-validation
kf = KFold(n_splits=n_folds, shuffle=True, random_state=42)
# Loop through each fold
for fold, (train_idx, val_idx) in enumerate(kf.split(train_df)):
print('Fold:', fold+1)
# Split train and validation datasets
X_train, y_train = train_df[features].iloc[train_idx], train_df[target].iloc[train_idx]
X_val, y_val = train_df[features].iloc[val_idx], train_df[target].iloc[val_idx]
# Initialize LGBMRegressor model
model = LGBMRegressor(**lgb_params)
# Fit model on train dataset
model.fit(X_train, y_train, eval_set=[(X_val, y_val)], early_stopping_rounds=100, verbose=100)
# Generate predictions on train and validation datasets
train_preds[val_idx] = model.predict(X_val)
test_preds += model.predict(test_df[features]) / n_folds
# Calculate RMSE for validation dataset
rmse = np.sqrt(mean_squared_error(y_val, train_preds[val_idx]))
print('RMSE:', rmse)
# Calculate overall RMSE for train dataset
rmse = np.sqrt(mean_squared_error(train_df[target], train_preds))
print('Overall RMSE:', rmse)
# Save predictions to CSV file
submission = pd.DataFrame({'id': test_df['id'], 'target': test_preds})
submission.to_csv('submission.csv', index=False)
```
python lgb
你好!关于 "python lgb",我猜测你可能在问 LightGBM(LGB)在 Python 中的使用方法。
要在 Python 中使用 LightGBM,首先需要安装 LightGBM 库。可以通过以下命令使用 pip 进行安装:
```
pip install lightgbm
```
安装完成后,可以在 Python 脚本中导入 LightGBM 并使用它进行机器学习任务。以下是一个简单的示例代码,演示了如何使用 LightGBM 进行二分类任务:
```python
import lightgbm as lgb
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
# 加载数据
data = pd.read_csv('data.csv')
X = data.drop('target', axis=1)
y = data['target']
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 创建 LightGBM 数据集
train_data = lgb.Dataset(X_train, label=y_train)
# 设置模型参数
params = {
'objective': 'binary',
'metric': 'binary_logloss',
'boosting_type': 'gbdt', 'num_leaves': 31,
'learning_rate': 0.05,
'feature_fraction': 0.9
}
# 训练模型
model = lgb.train(params, train_data, num_boost_round=100)
# 预测
y_pred = model.predict(X_test)
# 输出预测结果
print(y_pred)
# 相关问题:
阅读全文