import numpy as np import matplotlib.pyplot as plt # 创建三个一维矩阵 x = np.array([1, 2, 3, 4]) y = np.array([1, 2, 3]) z = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9]) # 将三个一维矩阵插值到一个二维网格中 xi, yi = np.meshgrid(x, y) zi = np.reshape(z, (len(y), len(x))) # 绘制插值后的二维矩阵结果 plt.imshow(zi) plt.show()
时间: 2023-10-05 15:13:56 浏览: 121
这段代码实现了三个一维矩阵的插值,将它们插值到一个二维网格中,并绘制出插值后的二维矩阵结果。具体来说,代码首先导入了 numpy 和 matplotlib.pyplot 两个库,然后创建了三个一维矩阵 x、y、z。
接着,代码使用 meshgrid 函数将 x 和 y 两个一维矩阵插值到一个二维网格中,得到了 xi 和 yi 两个二维矩阵。然后,代码使用 reshape 函数将 z 一维矩阵重新排列成一个 len(y) 行 len(x) 列的二维矩阵 zi,与 xi 和 yi 对应。
最后,代码使用 imshow 函数将插值后的二维矩阵结果 zi 绘制出来,调用 show 函数显示图像。这段代码的作用是可视化插值后的数据,有助于我们更直观地理解数据之间的关系。
相关问题
import numpy as np import matplotlib.pyplot as plt import pandas as pd import seaborn as sns from seaborn.external.kde import gaussian_kde sns.set() from scipy import stats from typing import * df = pd.read_excel("D:\\pythonProject\\data\\冬天.xls") power = df["功率"] #获取一列,用一维数据 power = np.array(power) print(power) import numpy as np from sklearn.neighbors import KernelDensity # 将 DataFrame 转换为 numpy 数组 data = df.to_numpy() # 从DataFrame类型中提取所需的列并将其转换为numpy数组类型 data = np.array(df['功率']) # 使用gaussian_kde函数进行核密度估计 density = gaussian_kde(data) # 生成横坐标 x = np.linspace(min(data), max(data),60) plt.plot(x, density(x)) import numpy as np from scipy import interpolate # 准备数据 x = data y = density(x) # 进行B样条曲线拟合 tck = interpolate.splrep(x, y, k=3, s=0) # 计算拟合曲线的值 x_new = np.linspace(x.min(), x.max(), 500) y_new = interpolate.splev(x_new, tck, der=0) # 保存系数矩阵 np.savez('tck.npz', tck)
这这段这段代码这段代码是这段代码是在这段代码是在Python这段代码是在Python中这段代码是在Python中使用这段代码是在Python中使用numpy这段代码是在Python中使用numpy、这段代码是在Python中使用numpy、matplotlib这段代码是在Python中使用numpy、matplotlib、这段代码是在Python中使用numpy、matplotlib、p这段代码是在Python中使用numpy、matplotlib、pandas这段代码是在Python中使用numpy、matplotlib、pandas、这段代码是在Python中使用numpy、matplotlib、pandas、se这段代码是在Python中使用numpy、matplotlib、pandas、seab这段代码是在Python中使用numpy、matplotlib、pandas、seaborn这段代码是在Python中使用numpy、matplotlib、pandas、seaborn、这段代码是在Python中使用numpy、matplotlib、pandas、seaborn、sc这段代码是在Python中使用numpy、matplotlib、pandas、seaborn、scipy这段代码是在Python中使用numpy、matplotlib、pandas、seaborn、scipy等这段代码是在Python中使用numpy、matplotlib、pandas、seaborn、scipy等库这段代码是在Python中使用numpy、matplotlib、pandas、seaborn、scipy等库导这段代码是在Python中使用numpy、matplotlib、pandas、seaborn、scipy等库导入这段代码是在Python中使用numpy、matplotlib、pandas、seaborn、scipy等库导入一这段代码是在Python中使用numpy、matplotlib、pandas、seaborn、scipy等库导入一些这段代码是在Python中使用numpy、matplotlib、pandas、seaborn、scipy等库导入一些需要这段代码是在Python中使用numpy、matplotlib、pandas、seaborn、scipy等库导入一些需要使用这段代码是在Python中使用numpy、matplotlib、pandas、seaborn、scipy等库导入一些需要使用的这段代码是在Python中使用numpy、matplotlib、pandas、seaborn、scipy等库导入一些需要使用的函数这段代码是在Python中使用numpy、matplotlib、pandas、seaborn、scipy等库导入一些需要使用的函数和这段代码是在Python中使用numpy、matplotlib、pandas、seaborn、scipy等库导入一些需要使用的函数和工这段代码是在Python中使用numpy、matplotlib、pandas、seaborn、scipy等库导入一些需要使用的函数和工具这段代码是在Python中使用numpy、matplotlib、pandas、seaborn、scipy等库导入一些需要使用的函数和工具,这段代码是在Python中使用numpy、matplotlib、pandas、seaborn、scipy等库导入一些需要使用的函数和工具,以这段代码是在Python中使用numpy、matplotlib、pandas、seaborn、scipy等库导入一些需要使用的函数和工具,以及这段代码是在Python中使用numpy、matplotlib、pandas、seaborn、scipy等库导入一些需要使用的函数和工具,以及读这段代码是在Python中使用numpy、matplotlib、pandas、seaborn、scipy等库导入一些需要使用的函数和工具,以及读取这段代码是在Python中使用numpy、matplotlib、pandas、seaborn、scipy等库导入一些需要使用的函数和工具,以及读取名这段代码是在Python中使用numpy、matplotlib、pandas、seaborn、scipy等库导入一些需要使用的函数和工具,以及读取名为这段代码是在Python中使用numpy、matplotlib、pandas、seaborn、scipy等库导入一些需要使用的函数和工具,以及读取名为“这段代码是在Python中使用numpy、matplotlib、pandas、seaborn、scipy等库导入一些需要使用的函数和工具,以及读取名为“冬这段代码是在Python中使用numpy、matplotlib、pandas、seaborn、scipy等库导入一些需要使用的函数和工具,以及读取名为“冬天这段代码是在Python中使用numpy、matplotlib、pandas、seaborn、scipy等库导入一些需要使用的函数和工具,以及读取名为“冬天.xls这段代码是在Python中使用numpy、matplotlib、pandas、seaborn、scipy等库导入一些需要使用的函数和工具,以及读取名为“冬天.xls”的这段代码是在Python中使用numpy、matplotlib、pandas、seaborn、scipy等库导入一些需要使用的函数和工具,以及读取名为“冬天.xls”的Excel这段代码是在Python中使用numpy、matplotlib、pandas、seaborn、scipy等库导入一些需要使用的函数和工具,以及读取名为“冬天.xls”的Excel文件这段代码是在Python中使用numpy、matplotlib、pandas、seaborn、scipy等库导入一些需要使用的函数和工具,以及读取名为“冬天.xls”的Excel文件中这段代码是在Python中使用numpy、matplotlib、pandas、seaborn、scipy等库导入一些需要使用的函数和工具,以及读取名为“冬天.xls”的Excel文件中的这段代码是在Python中使用numpy、matplotlib、pandas、seaborn、scipy等库导入一些需要使用的函数和工具,以及读取名为“冬天.xls”的Excel文件中的数据这段代码是在Python中使用numpy、matplotlib、pandas、seaborn、scipy等库导入一些需要使用的函数和工具,以及读取名为“冬天.xls”的Excel文件中的数据,这段代码是在Python中使用numpy、matplotlib、pandas、seaborn、scipy等库导入一些需要使用的函数和工具,以及读取名为“冬天.xls”的Excel文件中的数据,其中这段代码是在Python中使用numpy、matplotlib、pandas、seaborn、scipy等库导入一些需要使用的函数和工具,以及读取名为“冬天.xls”的Excel文件中的数据,其中包这段代码是在Python中使用numpy、matplotlib、pandas、seaborn、scipy等库导入一些需要使用的函数和工具,以及读取名为“冬天.xls”的Excel文件中的数据,其中包括这段代码是在Python中使用numpy、matplotlib、pandas、seaborn、scipy等库导入一些需要使用的函数和工具,以及读取名为“冬天.xls”的Excel文件中的数据,其中包括了这段代码是在Python中使用numpy、matplotlib、pandas、seaborn、scipy等库导入一些需要使用的函数和工具,以及读取名为“冬天.xls”的Excel文件中的数据,其中包括了功这段代码是在Python中使用numpy、matplotlib、pandas、seaborn、scipy等库导入一些需要使用的函数和工具,以及读取名为“冬天.xls”的Excel文件中的数据,其中包括了功率这段代码是在Python中使用numpy、matplotlib、pandas、seaborn、scipy等库导入一些需要使用的函数和工具,以及读取名为“冬天.xls”的Excel文件中的数据,其中包括了功率这这段代码是在Python中使用numpy、matplotlib、pandas、seaborn、scipy等库导入一些需要使用的函数和工具,以及读取名为“冬天.xls”的Excel文件中的数据,其中包括了功率这一这段代码是在Python中使用numpy、matplotlib、pandas、seaborn、scipy等库导入一些需要使用的函数和工具,以及读取名为“冬天.xls”的Excel文件中的数据,其中包括了功率这一列这段代码是在Python中使用numpy、matplotlib、pandas、seaborn、scipy等库导入一些需要使用的函数和工具,以及读取名为“冬天.xls”的Excel文件中的数据,其中包括了功率这一列的这段代码是在Python中使用numpy、matplotlib、pandas、seaborn、scipy等库导入一些需要使用的函数和工具,以及读取名为“冬天.xls”的Excel文件中的数据,其中包括了功率这一列的数据这段代码是在Python中使用numpy、matplotlib、pandas、seaborn、scipy等库导入一些需要使用的函数和工具,以及读取名为“冬天.xls”的Excel文件中的数据,其中包括了功率这一列的数据。
#https://pysource.com/2021/10/29/kalman-filter-predict-the-trajectory-of-an-object/ import cv2 import numpy as np import matplotlib.pyplot as plt class KalmanFilter: #实例属性 kf = cv2.KalmanFilter(4, 2) #其值为4,因为状态转移矩阵transitionMatrix有4个维度 #需要观测的维度为2 kf.measurementMatrix = np.array([[1, 0, 0, 0], [0, 1, 0, 0]], np.float32) #创建测量矩阵 kf.transitionMatrix = np.array([[1, 0, 1, 0], [0, 1, 0, 1], [0, 0, 0.7, 0], [0, 0, 0, 0.7]], np.float32) #创建状态转移矩阵 # 创建一个0-99的一维矩阵 z = [i for i in range(100)] z_watch = np.mat(z) # 创建一个方差为1的高斯噪声,精确到小数点后两位 noise = np.round(np.random.normal(0, 1, 100), 2) noise_mat = np.mat(noise) # 将z的观测值和噪声相加 z_mat = z_watch + noise_mat # 定义x的初始状态,即位置和速度 x_mat = np.mat([[0, ], [0, ]]) y_mat = np.mat([[0, ], [0, ]]) def predict(self, coordX, coordY): #实例方法,自己实现一个predict ''' This function estimates the position of the object''' measured = np.array([[np.float32(coordX)], [np.float32(coordY)]]) self.kf.correct(measured) #结合观测值更新状态值,correct为卡尔曼滤波器自带函数 predicted = self.kf.predict() #调用卡尔曼滤波器自带的预测函数 x, y = int(predicted[0]), int(predicted[1]) #得到预测后的坐标值 # 绘制结果 plt.plot(measured[0], 'k+', label='Measured_x') plt.plot(x, 'b-', label='Kalman Filter_x') #plt.plot(real_state, 'g-', label='Real state') plt.legend(loc='upper left') plt.title('Kalman Filter Results') plt.xlabel('Time (s)') plt.ylabel('Position (m)') plt.show() return x, y predict(self,x_mat,y_mat)优化这段python代码,随机生成x和y并实现对x和y的输入值的预测,并画出图像,实现可视化
# 导入必要的库
import cv2
import numpy as np
import matplotlib.pyplot as plt
class KalmanFilter:
def __init__(self):
# 创建卡尔曼滤波器
self.kf = cv2.KalmanFilter(4, 2)
# 创建测量矩阵
self.kf.measurementMatrix = np.array([[1, 0, 0, 0], [0, 1, 0, 0]], np.float32)
# 创建状态转移矩阵
self.kf.transitionMatrix = np.array([[1, 0, 1, 0], [0, 1, 0, 1], [0, 0, 0.7, 0], [0, 0, 0, 0.7]], np.float32)
# 创建过程噪声协方差矩阵
self.kf.processNoiseCov = np.array([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0.5, 0], [0, 0, 0, 0.5]], np.float32)
# 定义x的初始状态,即位置和速度
self.x = np.array([[0], [0], [0], [0]], np.float32)
def predict(self, coordX, coordY):
# 将输入值转换为测量值
measured = np.array([[np.float32(coordX)], [np.float32(coordY)]])
# 预测下一时刻的状态值
self.x = self.kf.predict()
# 结合观测值更新状态值
self.x = self.kf.correct(measured)
# 得到预测后的坐标值
x, y = int(self.x[0]), int(self.x[1])
return x, y
# 创建KalmanFilter实例
kf = KalmanFilter()
# 随机生成x和y
x = np.array([i for i in range(1, 101)])
y = np.array([i for i in range(1, 101)])
# 添加随机噪声
x = x + np.random.normal(0, 10, 100)
y = y + np.random.normal(0, 10, 100)
# 预测输入值的位置
predicted_x = []
predicted_y = []
for i in range(100):
px, py = kf.predict(x[i], y[i])
predicted_x.append(px)
predicted_y.append(py)
# 绘制结果
plt.plot(x, y, 'k+', label='Measured')
plt.plot(predicted_x, predicted_y, 'b-', label='Kalman Filter')
plt.legend(loc='upper left')
plt.title('Kalman Filter Results')
plt.xlabel('X')
plt.ylabel('Y')
plt.show()
阅读全文