请帮我写一个关于“基于LSTM的短期风速软测量”的matlab的代码,要分出训练数据和测试数据,并给出预测结果和实际结果的对比曲线,训练误差曲线和相对误差曲线。
时间: 2024-03-04 21:49:57 浏览: 128
好的,我可以为您提供一个基于LSTM的短期风速预测的完整Matlab代码,包括数据预处理、模型构建、训练和预测等步骤,并且可以分出训练集和测试集,给出预测结果和实际结果的对比曲线,训练误差曲线和相对误差曲线。请参考以下代码:
```matlab
% 读取数据
data = readtable('wind_speed_data.csv'); % wind_speed_data.csv是风速数据文件,可以根据实际情况更改文件名
% 数据预处理
% 处理缺失值
data(isnan(data)) = 0;
% 归一化
data_norm = normalize(data);
% 划分训练集和测试集
train_ratio = 0.8; % 训练集所占比例
train_num = floor(size(data_norm, 1) * train_ratio);
train_data = data_norm(1:train_num, :);
test_data = data_norm(train_num+1:end, :);
% 构建LSTM模型
num_features = size(data_norm, 2); % 特征数量
num_hidden_units = 128; % LSTM隐含层神经元数量
% 定义网络结构
layers = [ ...
sequenceInputLayer(num_features)
lstmLayer(num_hidden_units)
fullyConnectedLayer(1)
regressionLayer];
% 设置训练选项
options = trainingOptions('adam', ...
'MaxEpochs', 100, ...
'GradientThreshold', 1, ...
'InitialLearnRate', 0.001, ...
'LearnRateSchedule', 'piecewise', ...
'LearnRateDropFactor', 0.1, ...
'LearnRateDropPeriod', 10, ...
'Verbose', 0, ...
'Plots', 'training-progress');
% 训练模型
Xtrain = train_data(:, 1:end-1);
Ytrain = train_data(:, end);
net = trainNetwork(Xtrain', Ytrain', layers, options);
% 预测测试集
Xtest = test_data(:, 1:end-1);
Ytest = test_data(:, end);
Ypred = predict(net, Xtest');
% 反归一化
Ytest = Ytest .* std(data{train_num+1:end, end}) + mean(data{train_num+1:end, end});
Ypred = Ypred .* std(data{train_num+1:end, end}) + mean(data{train_num+1:end, end});
% 计算误差
rmse = sqrt(mean((Ypred-Ytest').^2));
mape = mean(abs(Ypred-Ytest')./Ytest') * 100;
% 可视化结果
figure;
plot(Ytest);
hold on;
plot(Ypred);
legend('真实值', '预测值');
xlabel('样本序号');
ylabel('风速');
title(['RMSE=', num2str(rmse), ', MAPE=', num2str(mape), '%']);
% 可视化训练误差曲线
figure;
plot(net.TrainingLoss);
xlabel('迭代次数');
ylabel('训练误差');
title('训练误差曲线');
% 可视化相对误差曲线
figure;
plot((Ypred-Ytest')./Ytest');
xlabel('样本序号');
ylabel('相对误差');
title('相对误差曲线');
```
需要注意的是,这份代码中的数据文件`wind_speed_data.csv`需要按照以下格式存储:第一列是日期(可以是任意格式),第二列是风速值。此外,数据预处理和模型调参都是比较重要的环节,也需要根据实际情况进行处理和优化。希望这份代码能对您有所帮助。
阅读全文