纠正代码:trainsets = pd.read_csv('/Users/zhangxinyu/Desktop/trainsets82.csv') testsets = pd.read_csv('/Users/zhangxinyu/Desktop/testsets82.csv') y_train_forced_turnover_nolimited = trainsets['m3_forced_turnover_nolimited'] X_train = trainsets.drop(['m3_P_perf_ind_all_1','m3_P_perf_ind_all_2','m3_P_perf_ind_all_3','m3_P_perf_ind_allind_1',\ 'm3_P_perf_ind_allind_2','m3_P_perf_ind_allind_3','m3_P_perf_ind_year_1','m3_P_perf_ind_year_2',\ 'm3_P_perf_ind_year_3','m3_forced_turnover_nolimited','m3_forced_turnover_3mon',\ 'm3_forced_turnover_6mon','m3_forced_turnover_1year','m3_forced_turnover_3year',\ 'm3_forced_turnover_5year','m3_forced_turnover_10year',\ 'CEOid','CEO_turnover_N','year','Firmid','appo_year'],axis=1) y_test_forced_turnover_nolimited = testsets['m3_forced_turnover_nolimited'] X_test = testsets.drop(['m3_P_perf_ind_all_1','m3_P_perf_ind_all_2','m3_P_perf_ind_all_3','m3_P_perf_ind_allind_1',\ 'm3_P_perf_ind_allind_2','m3_P_perf_ind_allind_3','m3_P_perf_ind_year_1','m3_P_perf_ind_year_2',\ 'm3_P_perf_ind_year_3','m3_forced_turnover_nolimited','m3_forced_turnover_3mon',\ 'm3_forced_turnover_6mon','m3_forced_turnover_1year','m3_forced_turnover_3year',\ 'm3_forced_turnover_5year','m3_forced_turnover_10year',\ 'CEOid','CEO_turnover_N','year','Firmid','appo_year'],axis=1) from sklearn.ensemble import RandomForestClassifier rfc = RandomForestClassifier(n_estimators=100, max_depth=10, random_state=42) rfc.fit(X_train, y_train_forced_turnover_nolimited) y_pred = rfc.predict_proba(X_test) # 计算AUC值 auc = roc_auc_score(y_test_forced_turnover_nolimited, y_pred) # 输出AUC值 print('测试集AUC值为:', auc)
时间: 2024-04-27 13:22:29 浏览: 165
trainsets = pd.read_csv('/Users/zhangxinyu/Desktop/trainsets82.csv')
testsets = pd.read_csv('/Users/zhangxinyu/Desktop/testsets82.csv')
y_train_forced_turnover_nolimited = trainsets['m3_forced_turnover_nolimited']
X_train = trainsets.drop(['m3_P_perf_ind_all_1','m3_P_perf_ind_all_2','m3_P_perf_ind_all_3','m3_P_perf_ind_allind_1',
'm3_P_perf_ind_allind_2','m3_P_perf_ind_allind_3','m3_P_perf_ind_year_1','m3_P_perf_ind_year_2',
'm3_P_perf_ind_year_3','m3_forced_turnover_nolimited','m3_forced_turnover_3mon',
'm3_forced_turnover_6mon','m3_forced_turnover_1year','m3_forced_turnover_3year',
'm3_forced_turnover_5year','m3_forced_turnover_10year','CEOid','CEO_turnover_N','year',
'Firmid','appo_year'], axis=1)
y_test_forced_turnover_nolimited = testsets['m3_forced_turnover_nolimited']
X_test = testsets.drop(['m3_P_perf_ind_all_1','m3_P_perf_ind_all_2','m3_P_perf_ind_all_3','m3_P_perf_ind_allind_1',
'm3_P_perf_ind_allind_2','m3_P_perf_ind_allind_3','m3_P_perf_ind_year_1','m3_P_perf_ind_year_2',
'm3_P_perf_ind_year_3','m3_forced_turnover_nolimited','m3_forced_turnover_3mon',
'm3_forced_turnover_6mon','m3_forced_turnover_1year','m3_forced_turnover_3year',
'm3_forced_turnover_5year','m3_forced_turnover_10year','CEOid','CEO_turnover_N','year',
'Firmid','appo_year'], axis=1)
from sklearn.ensemble import RandomForestClassifier
rfc = RandomForestClassifier(n_estimators=100, max_depth=10, random_state=42)
rfc.fit(X_train, y_train_forced_turnover_nolimited)
y_pred = rfc.predict_proba(X_test)[:, 1] # 计算AUC值时需要使用预测结果的概率值而不是预测结果本身
from sklearn.metrics import roc_auc_score
auc = roc_auc_score(y_test_forced_turnover_nolimited, y_pred) # 计算AUC值
print('测试集AUC值为:', auc) # 输出AUC值
阅读全文