maddpg算法pytorch实例讲解

时间: 2024-01-17 12:03:04 浏览: 156
MADDPG是一种多智能体强化学习算法,它是DDPG的扩展版本。DDPG是一种深度强化学习算法,用于解决连续动作空间的问题。在MADDPG中,每个智能体都具有自己的actor和critic网络。这些网络被用来学习不同的策略,并且可以共享经验池中的经验。在此过程中,每个智能体都能够观察到其他智能体的状态,并且可以考虑其他智能体的行为。 下面是一个使用Pytorch实现MADDPG算法的示例代码: ```python import torch import torch.nn as nn import torch.optim as optim import numpy as np from collections import deque # 神经网络定义 class Actor(nn.Module): def __init__(self, state_dim, action_dim, max_action): super(Actor, self).__init__() self.layer_1 = nn.Linear(state_dim, 256) self.layer_2 = nn.Linear(256, 256) self.layer_3 = nn.Linear(256, action_dim) self.max_action = max_action def forward(self, x): x = torch.relu(self.layer_1(x)) x = torch.relu(self.layer_2(x)) x = self.max_action * torch.tanh(self.layer_3(x)) return x class Critic(nn.Module): def __init__(self, state_dim, action_dim): super(Critic, self).__init__() self.layer_1 = nn.Linear(state_dim + action_dim, 256) self.layer_2 = nn.Linear(256, 256) self.layer_3 = nn.Linear(256, 1) def forward(self, x, u): xu = torch.cat([x, u], 1) xu = torch.relu(self.layer_1(xu)) xu = torch.relu(self.layer_2(xu)) xu = self.layer_3(xu) return xu # 经验回放缓冲区 class ReplayBuffer: def __init__(self, max_size): self.buffer = deque(maxlen=max_size) def add(self, state, action, reward, next_state, done): self.buffer.append((state, action, reward, next_state, done)) def sample(self, batch_size): state, action, reward, next_state, done = zip(*np.random.choice(self.buffer, batch_size, replace=False)) return np.concatenate(state), np.concatenate(action), np.array(reward, dtype=np.float32), np.concatenate(next_state), np.array(done, dtype=np.uint8) def __len__(self): return len(self.buffer) # MADDPG算法 class MADDPG: def __init__(self, state_dim, action_dim, max_action, discount=0.99, tau=0.01): self.discount = discount self.tau = tau self.memory = ReplayBuffer(1000000) self.actor = Actor(state_dim, action_dim, max_action) self.actor_target = Actor(state_dim, action_dim, max_action) self.critic = Critic(state_dim, action_dim) self.critic_target = Critic(state_dim, action_dim) self.actor_optimizer = optim.Adam(self.actor.parameters(), lr=0.001) self.critic_optimizer = optim.Adam(self.critic.parameters(), lr=0.001) def get_action(self, state): state = torch.FloatTensor(state.reshape(1, -1)) return self.actor(state).detach().numpy()[0] def update(self, batch_size): state, action, reward, next_state, done = self.memory.sample(batch_size) state = torch.FloatTensor(state) action = torch.FloatTensor(action) reward = torch.FloatTensor(reward).unsqueeze(1) next_state = torch.FloatTensor(next_state) done = torch.FloatTensor(done).unsqueeze(1) # 更新critic网络 next_actions = [] for i in range(action.shape[0]): next_actions.append(self.actor_target(torch.FloatTensor(next_state[i]).unsqueeze(0))) next_actions = torch.cat(next_actions, dim=0) target_Q = self.critic_target(next_state, next_actions).detach() y = reward + (1 - done) * self.discount * target_Q current_Q = self.critic(state, action) critic_loss = nn.MSELoss()(current_Q, y) self.critic_optimizer.zero_grad() critic_loss.backward() self.critic_optimizer.step() # 更新actor网络 actions = [] for i in range(action.shape[0]): actions.append(self.actor(torch.FloatTensor(state[i]).unsqueeze(0))) actions = torch.cat(actions, dim=0) actor_loss = -self.critic(state, actions).mean() self.actor_optimizer.zero_grad() actor_loss.backward() self.actor_optimizer.step() # 更新target网络 for target_param, param in zip(self.actor_target.parameters(), self.actor.parameters()): target_param.data.copy_(self.tau * param.data + (1 - self.tau) * target_param.data) for target_param, param in zip(self.critic_target.parameters(), self.critic.parameters()): target_param.data.copy_(self.tau * param.data + (1 - self.tau) * target_param.data) # 训练 def train(env, agent, episodes, batch_size): for episode in range(episodes): state = env.reset() done = False while not done: action = agent.get_action(state) next_state, reward, done, _ = env.step(action) agent.memory.add(state, action, reward, next_state, done) state = next_state if len(agent.memory) > batch_size: agent.update(batch_size) env = gym.make('MultiAgentPendulum-v0') state_dim = env.observation_space.shape[0] action_dim = env.action_space.shape[0] max_action = float(env.action_space.high[0]) agent = MADDPG(state_dim, action_dim, max_action) train(env, agent, 10000, 256) ``` 这段代码中,我们首先定义了Actor和Critic神经网络,然后定义了经验回放缓冲区。接着,我们实现了MADDPG算法,并在训练函数中使用该算法。在每个episode中,我们首先将环境重置,并在每个时间步中获取智能体的动作。然后,我们将经验添加到回放缓冲区中,并在缓冲区中积累一定的经验后,使用MADDPG算法更新每个智能体的actor和critic网络。
阅读全文

相关推荐

最新推荐

recommend-type

在Pytorch中使用Mask R-CNN进行实例分割操作

【PyTorch中使用Mask R-CNN进行实例分割】 实例分割是计算机视觉领域的一个关键任务,它旨在识别图像中每个像素所属的对象实例。不同于语义分割,实例分割不仅标识像素的类别,还能区分同一类的不同实例。Mask R-...
recommend-type

Pytorch: 自定义网络层实例

本篇文章将详细讲解如何在PyTorch中实现自定义的网络层,特别是利用自动微分机制来简化复杂的计算过程。 首先,让我们理解自动微分的基本概念。自动微分是一种在计算图框架下进行梯度计算的方法,它可以自动处理...
recommend-type

pytorch点乘与叉乘示例讲解

本文将深入讲解这两种运算,并通过示例来帮助理解。 ### 点乘(Dot Product) 点乘,又称为标量积或内积,它在PyTorch中可以使用`torch.dot()`函数或通过简单的乘法运算符`*`来实现。点乘的结果是一个标量值,它...
recommend-type

pytorch实现mnist分类的示例讲解

在本篇教程中,我们将探讨如何使用PyTorch实现MNIST手写数字识别的分类任务。MNIST数据集是机器学习领域的一个经典基准,它包含了60000个训练样本和10000个测试样本,每个样本都是28x28像素的灰度手写数字图像。 ...
recommend-type

pytorch 彩色图像转灰度图像实例

在给定的实例中,首先使用PyTorch的`dset.CIFAR10`函数来加载CIFAR-10数据集,这是一个包含10个类别的彩色图像数据集,每个图像尺寸为32x32像素。`download=True`参数用于自动下载数据集,如果尚未在指定目录下找到...
recommend-type

RStudio中集成Connections包以优化数据库连接管理

资源摘要信息:"connections:https" ### 标题解释 标题 "connections:https" 直接指向了数据库连接领域中的一个重要概念,即通过HTTP协议(HTTPS为安全版本)来建立与数据库的连接。在IT行业,特别是数据科学与分析、软件开发等领域,建立安全的数据库连接是日常工作的关键环节。此外,标题可能暗示了一个特定的R语言包或软件包,用于通过HTTP/HTTPS协议实现数据库连接。 ### 描述分析 描述中提到的 "connections" 是一个软件包,其主要目标是与R语言的DBI(数据库接口)兼容,并集成到RStudio IDE中。它使得R语言能够连接到数据库,尽管它不直接与RStudio的Connections窗格集成。这表明connections软件包是一个辅助工具,它简化了数据库连接的过程,但并没有改变RStudio的用户界面。 描述还提到connections包能够读取配置,并创建与RStudio的集成。这意味着用户可以在RStudio环境下更加便捷地管理数据库连接。此外,该包提供了将数据库连接和表对象固定为pins的功能,这有助于用户在不同的R会话中持续使用这些资源。 ### 功能介绍 connections包中两个主要的功能是 `connection_open()` 和可能被省略的 `c`。`connection_open()` 函数用于打开数据库连接。它提供了一个替代于 `dbConnect()` 函数的方法,但使用完全相同的参数,增加了自动打开RStudio中的Connections窗格的功能。这样的设计使得用户在使用R语言连接数据库时能有更直观和便捷的操作体验。 ### 安装说明 描述中还提供了安装connections包的命令。用户需要先安装remotes包,然后通过remotes包的`install_github()`函数安装connections包。由于connections包不在CRAN(综合R档案网络)上,所以需要使用GitHub仓库来安装,这也意味着用户将能够访问到该软件包的最新开发版本。 ### 标签解读 标签 "r rstudio pins database-connection connection-pane R" 包含了多个关键词: - "r" 指代R语言,一种广泛用于统计分析和图形表示的编程语言。 - "rstudio" 指代RStudio,一个流行的R语言开发环境。 - "pins" 指代R包pins,它可能与connections包一同使用,用于固定数据库连接和表对象。 - "database-connection" 指代数据库连接,即软件包要解决的核心问题。 - "connection-pane" 指代RStudio IDE中的Connections窗格,connections包旨在与之集成。 - "R" 代表R语言社区或R语言本身。 ### 压缩包文件名称列表分析 文件名称列表 "connections-master" 暗示了一个可能的GitHub仓库名称或文件夹名称。通常 "master" 分支代表了软件包或项目的稳定版或最新版,是大多数用户应该下载和使用的版本。 ### 总结 综上所述,connections包是一个专为R语言和RStudio IDE设计的软件包,旨在简化数据库连接过程并提供与Connections窗格的集成。它允许用户以一种更为方便的方式打开和管理数据库连接,而不直接提供与Connections窗格的集成。connections包通过读取配置文件和固定连接对象,增强了用户体验。安装connections包需通过remotes包从GitHub获取最新开发版本。标签信息显示了connections包与R语言、RStudio、数据库连接以及R社区的紧密联系。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Keil uVision5全面精通指南

# 摘要 Keil uVision5是一个集成开发环境,广泛应用于嵌入式系统的开发。本文从基础入门开始,详细介绍了Keil uVision5的项目管理、配置、编程实践、高级功能及技巧,并通过项目案例分析,深入阐述了其在实际开发中的应用。本篇论文特别注重于项目创建、目标配置、调试环境搭建、性能优化、脚本编程与自动化、高级调试技术,以及通过嵌入式操作系统集成和驱动开发流程的案例分析,展示了Keil uVision5的实用性和高效性。文章还展望了Keil uVision5的未来发展趋势,并提供了社区资源和学习渠道,为读者提供了一个全面掌握Keil uVision5的平台。 # 关键字 Keil u
recommend-type

flink提交给yarn19个全量同步MYsqlCDC的作业,flink的配置参数怎样设置

在Flink中,如果你需要将19个MySQL CDC(Change Data Capture)的全量同步作业提交到YARN上,你需要确保Flink集群和YARN进行了正确的集成,并配置了适当的参数。以下是可能涉及到的一些关键配置: 1. **并行度(Parallelism)**:每个作业的并行度应该设置得足够高,以便充分利用YARN提供的资源。例如,如果你有19个任务,你可以设置总并行度为19或者是一个更大的数,取决于集群规模。 ```yaml parallelism = 19 或者 根据实际资源调整 ``` 2. **YARN资源配置**:Flink通过`yarn.a
recommend-type

PHP博客旅游的探索之旅

资源摘要信息:"博客旅游" 博客旅游是一个以博客形式分享旅行经验和旅游信息的平台。随着互联网技术的发展和普及,博客作为一种个人在线日志的形式,已经成为人们分享生活点滴、专业知识、旅行体验等的重要途径。博客旅游正是结合了博客的个性化分享特点和旅游的探索性,让旅行爱好者可以记录自己的旅游足迹、分享旅游心得、提供目的地推荐和旅游攻略等。 在博客旅游中,旅行者可以是内容的创造者也可以是内容的消费者。作为创造者,旅行者可以通过博客记录下自己的旅行故事、拍摄的照片和视频、体验和评价各种旅游资源,如酒店、餐馆、景点等,还可以分享旅游小贴士、旅行日程规划等实用信息。作为消费者,其他潜在的旅行者可以通过阅读这些博客内容获得灵感、获取旅行建议,为自己的旅行做准备。 在技术层面,博客平台的构建往往涉及到多种编程语言和技术栈,例如本文件中提到的“PHP”。PHP是一种广泛使用的开源服务器端脚本语言,特别适合于网页开发,并可以嵌入到HTML中使用。使用PHP开发的博客旅游平台可以具有动态内容、用户交互和数据库管理等强大的功能。例如,通过PHP可以实现用户注册登录、博客内容的发布与管理、评论互动、图片和视频上传、博客文章的分类与搜索等功能。 开发一个功能完整的博客旅游平台,可能需要使用到以下几种PHP相关的技术和框架: 1. HTML/CSS/JavaScript:前端页面设计和用户交互的基础技术。 2. 数据库管理:如MySQL,用于存储用户信息、博客文章、评论等数据。 3. MVC框架:如Laravel或CodeIgniter,提供了一种组织代码和应用逻辑的结构化方式。 4. 服务器技术:如Apache或Nginx,作为PHP的运行环境。 5. 安全性考虑:需要实现数据加密、输入验证、防止跨站脚本攻击(XSS)等安全措施。 当创建博客旅游平台时,还需要考虑网站的可扩展性、用户体验、移动端适配、搜索引擎优化(SEO)等多方面因素。一个优质的博客旅游平台,不仅能够提供丰富的内容,还应该注重用户体验,包括页面加载速度、界面设计、内容的易于导航等。 此外,博客旅游平台还可以通过整合社交媒体功能,允许用户通过社交媒体账号登录、分享博客内容到社交网络,从而提升平台的互动性和可见度。 综上所述,博客旅游作为一个结合了旅行分享和在线日志的平台,对于旅行者来说,不仅是一个记录和分享旅行体验的地方,也是一个获取旅行信息、学习旅游知识的重要资源。而对于开发者来说,构建这样一个平台需要运用到多种技术和考虑多个技术细节,确保平台的功能性和用户体验。